Alexander Keller

keller@informatik.uni-kl.de

Dept. of Computer Science University of Kaiserslautern 'For every randomized algorithm, there is a clever deterministic one.' Harald Niederreiter, Claremont, 1998. 'For every randomized algorithm, there is a clever deterministic one.' Harald Niederreiter, Claremont, 1998.

- no real random on classical deterministic computers
- real random by measuring quantum registers

- MC: Monte Carlo
 - random sampling
- **QMC:** Quasi-Monte Carlo integration
 - low-discrepancy sampling by deterministic nets, sequences, and lattices

- MC: Monte Carlo
 - random sampling
- **QMC**: Quasi-Monte Carlo integration
 - low-discrepancy sampling by deterministic nets, sequences, and lattices
- **RQMC** = **MC**: Monte Carlo extensions of quasi-Monte Carlo
 - random field synthesis on good lattice points
 - randomized quasi-Monte Carlo integration

- MC: Monte Carlo
 - random sampling
- **QMC**: Quasi-Monte Carlo integration
 - low-discrepancy sampling by deterministic nets, sequences, and lattices
- **RQMC** = **MC**: Monte Carlo extensions of quasi-Monte Carlo
 - random field synthesis on good lattice points
 - randomized quasi-Monte Carlo integration
- **DRQMC** = **QMC**: Derandomized randomized quasi-Monte Carlo integration

- MC: Industry standard RenderMan by PIXAR
 - stratified random sampling

- MC: Industry standard RenderMan by PIXAR
 - stratified random sampling
- **QMC**: Derandomized RenderMan
 - new graphics hardware

- MC: Industry standard RenderMan by PIXAR
 - stratified random sampling
- **QMC**: Derandomized RenderMan
 - new graphics hardware
- **RQMC**: Ocean wave synthesis
 - discrete Fourier transform independent of dimension
 - ROMC: Error estimation for bidirectional path tracing
 - simpler algorithms

- MC: Industry standard RenderMan by PIXAR
 - stratified random sampling
- **QMC**: Derandomized RenderMan
 - new graphics hardware
- **RQMC**: Ocean wave synthesis
 - discrete Fourier transform independent of dimension
 - **RQMC**: Error estimation for bidirectional path tracing
 - simpler algorithms
- **DRQMC**: Industry standard mental ray by mental images
 - deterministic correlated low discrepancy sampling
 - fastest performance

- Uncorrelated sampling
 - correlated sampling more efficient

- Uncorrelated sampling
 - correlated sampling more efficient
- Uniformity is sufficient
 - low-discrepancy sampling more efficient

- Uncorrelated sampling
 - correlated sampling more efficient
- Uniformity is sufficient
 - low-discrepancy sampling more efficient
- Sampling points from classical space filling curves
 - not of low discrepancy

- Uncorrelated sampling
 - correlated sampling more efficient
- Uniformity is sufficient
 - low-discrepancy sampling more efficient
- Sampling points from classical space filling curves
 - not of low discrepancy
- Either stratification or Latin hypercube sampling
 - you can have both and even more...

- Uncorrelated sampling
 - correlated sampling more efficient
- Uniformity is sufficient
 - low-discrepancy sampling more efficient
- Sampling points from classical space filling curves
 - not of low discrepancy
- Either stratification or Latin hypercube sampling
 - you can have both and even more...
- One dimensional stratified Monte Carlo integration
 - Cranley-Patterson rotations more efficient

- Uncorrelated sampling
 - correlated sampling more efficient
- Uniformity is sufficient
 - low-discrepancy sampling more efficient
- Sampling points from classical space filling curves
 - not of low discrepancy
- Either stratification or Latin hypercube sampling
 - you can have both and even more...
- One dimensional stratified Monte Carlo integration
 - Cranley-Patterson rotations more efficient
- Antialiasing only by random sampling
 - deterministic low-discrepancy sampling more efficient

Program

- Day 1: Monte Carlo
- Day 2: Quasi-Monte Carlo points
- Day 3: Quasi-Monte Carlo integration
- Day 4: Monte Carlo extensions of quasi-Monte Carlo
- Day 5: Applications to computer graphics

Techniques for basically all high-dimensional integration and transport problems

Day 1: Monte Carlo

- Simulation of random variables and fields
- Monte Carlo integration
- Method of dependent tests
- Multilevel method of dependent tests
- Dependent sampling
- Replication heuristics
- Regularization of the samples

Probability Spaces, Random Variables and Random Fields

• Definition: A *probability space* is given by a set $\Omega = \{\omega_1, \omega_2, \ldots\}$ of *elementary events* ω_i , where each elementary event is assigned a probability with

 $0 \leq \operatorname{Prob}(\omega_i) \leq 1$ and $\sum_{\omega \in \Omega} \operatorname{Prob}(\omega) = 1.$

 $E \subseteq \Omega$ is called *event* with

 $\operatorname{Prob}(E) = \sum_{\omega \in E} \operatorname{Prob}(\omega).$

Probability Spaces, Random Variables and Random Fields

• Definition: A *probability space* is given by a set $\Omega = \{\omega_1, \omega_2, \ldots\}$ of *elementary events* ω_i , where each elementary event is assigned a probability with

 $0 \leq \operatorname{Prob}(\omega_i) \leq 1$ and $\sum_{\omega \in \Omega} \operatorname{Prob}(\omega) = 1.$

 $E \subseteq \Omega$ is called *event* with

 $\operatorname{Prob}(E) = \sum_{\omega \in E} \operatorname{Prob}(\omega).$

• **Definition:** Given a probability space on the set of elementary events Ω , a mapping

 $\begin{array}{rccc} X: \Omega & \to & \mathbb{R} \\ & \omega & \mapsto & X_{\omega} \end{array}$

is called a *random variable*. X_{ω} is called a *realization*.

Probability Spaces, Random Variables and Random Fields

• Definition: A *probability space* is given by a set $\Omega = \{\omega_1, \omega_2, \ldots\}$ of *elementary events* ω_i , where each elementary event is assigned a probability with

 $0 \leq \operatorname{Prob}(\omega_i) \leq 1$ and $\sum_{\omega \in \Omega} \operatorname{Prob}(\omega) = 1.$

 $E \subseteq \Omega$ is called *event* with

 $\operatorname{Prob}(E) = \sum_{\omega \in E} \operatorname{Prob}(\omega).$

• **Definition:** Given a probability space on the set of elementary events Ω , a mapping

 $X: \Omega \rightarrow \mathbb{R}$

$$\omega \mapsto X_{\omega}$$

is called a *random variable*. X_{ω} is called a *realization*.

• Definition: A random field (also called random function)

 $X: \Omega \rightarrow C(s, d)$

 $\omega \mapsto X_{\omega}$

maps the space of elementary events Ω into the space of continuous functions C(s, d). If s = 1 the random fields can be called **random process**.

Discrete Random Variables

Definition: If the probability space Ω is finite or countable, the random variable X is discrete.

$$P_X : \mathbb{R} \rightarrow [0, 1]$$

 $x \mapsto \operatorname{Prob}(X \le x) = \sum_{x' \le x} \operatorname{Prob}(X = x')$

is called *cumulative distribution function (cdf)* of the random variable X.

Continuous Random Variables

• **Definition:** A *continuous random variable* X and its underlying (real) probability space are defined by an integrable density function

 $p_X: \mathbb{R} \to \mathbb{R}_0^+$

with the property $\int_{\mathbb{R}} p_X(x) dx = 1$. A set $A \subseteq \mathbb{R}$ that can be built by the union $A = \bigcup_k I_k$ of countably many pair-wise disjoint intervals of arbitrary kind (open, closed, half-open, one-sided infinite) is called **event**. X takes a value from A with

$$\mathsf{Prob}(A) = \int_A p_X(x) dx = \sum_k \int_{I_k} p_X(x) dx.$$

The *cumulative distribution function (cdf)* is

$$P_X(x) = \operatorname{Prob}(X \le x) = \operatorname{Prob}(\{t \in \mathbb{R} | t \le x\}) = \int_{-\infty}^x p_X(t) dt.$$

- Properties of the cumulative distribution function
 - monotonicity and continuity
 - $-\lim_{x\to -\infty} P_X(x) = 0$
 - $-\lim_{x\to\infty}P_X(x)=1$

- Properties of the cumulative distribution function
 - monotonicity and continuity
 - $-\lim_{x\to-\infty}P_X(x)=0$
 - $-\lim_{x\to\infty}P_X(x)=1$
- **Corollary:** Any differentiable function *P* that fulfills the above properties can be assigned a probability density function by

p = P'(x).

• Probability density function

$$p_{\mathcal{U}}(x) = \begin{cases} 1 & x \in [0,1)^s \\ 0 & \text{else} \end{cases}$$

• Probability density function

$$p_{\mathcal{U}}(x) = \begin{cases} 1 & x \in [0, 1)^s \\ 0 & \text{else} \end{cases}$$

- Requirements for simulation, i.e. realization
 - fast, deterministic algorithms
 - mimic independence
 - \Rightarrow pseudo-random numbers

• Probability density function

$$p_{\mathcal{U}}(x) = \begin{cases} 1 & x \in [0, 1)^s \\ 0 & \text{else} \end{cases}$$

- Requirements for simulation, i.e. realization
 - fast, deterministic algorithms
 - mimic independence
 - \Rightarrow pseudo-random numbers
- Example: Linear congruential generators (starting value z_0)

$$z_{i+1} = (az_i + c) \mod m \in \{0, \dots, m-1\}$$

 $\xi_{i+1} = \frac{z_{i+1}}{m}$

• Probability density function

$$p_{\mathcal{U}}(x) = \begin{cases} 1 & x \in [0, 1)^s \\ 0 & \text{else} \end{cases}$$

- Requirements for simulation, i.e. realization
 - fast, deterministic algorithms
 - mimic independence
 - \Rightarrow pseudo-random numbers
- Example: Linear congruential generators (starting value z_0)

 $z_{i+1} = (az_i + c) \mod m \in \{0, \dots, m-1\}$ $\xi_{i+1} = \frac{z_{i+1}}{m}$

- discrete subset of [0, 1)
- finite period
- choice of a, c, m crucial for good statistical properties
- parallelization difficult

The Multidimensional Inversion Method

• For p(x) > 0 for $x \in I^s$ and $\int_{I^s} p(x) dx < \infty$ realize *p*-distributed samples

$$P^{-1}(x) := (y^{(1)}, \dots, y^{(s)}) = y$$

from $x \sim \mathcal{U}$ by successively determining

$$y^{(1)}$$
 using $x^{(1)} = F_1(y^{(1)})$,
 $y^{(2)}$ using $x^{(2)} = F_2(y^{(1)}, y^{(2)})$
:

using the bijections

$$F_{j}(t_{1},\ldots,t_{j}) := \frac{\int_{0}^{t_{j}} \int_{0}^{1} \cdots \int_{0}^{1} p(t_{1},\ldots,t_{j-1},\tau_{j},\ldots,\tau_{s}) d\tau_{j} \cdots d\tau_{s}}{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} p(t_{1},\ldots,t_{j-1},\tau_{j},\ldots,\tau_{s}) d\tau_{j} \cdots d\tau_{s}}$$

The Multidimensional Inversion Method

• For p(x) > 0 for $x \in I^s$ and $\int_{I^s} p(x) dx < \infty$ realize p-distributed samples

$$P^{-1}(x) := (y^{(1)}, \dots, y^{(s)}) = y$$

from $x \sim \mathcal{U}$ by successively determining

$$y^{(1)}$$
 using $x^{(1)} = F_1(y^{(1)})$,
 $y^{(2)}$ using $x^{(2)} = F_2(y^{(1)}, y^{(2)})$
:

using the bijections

$$F_{j}(t_{1},\ldots,t_{j}) := \frac{\int_{0}^{t_{j}} \int_{0}^{1} \cdots \int_{0}^{1} p(t_{1},\ldots,t_{j-1},\tau_{j},\ldots,\tau_{s}) d\tau_{j} \cdots d\tau_{s}}{\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} p(t_{1},\ldots,t_{j-1},\tau_{j},\ldots,\tau_{s}) d\tau_{j} \cdots d\tau_{s}}$$

• If $p(x) = \prod_{j=1}^{s} p^{(j)}(x^{(j)})$

$$F_{j}(t_{j}) = \frac{\int_{0}^{t_{j}} p^{(j)}(\tau) d\tau}{\int_{0}^{1} p^{(j)}(\tau) d\tau}$$

The Multidimensional Inversion Method

• For p(x) > 0 for $x \in I^s$ and $\int_{I^s} p(x) dx < \infty$ realize *p*-distributed samples

$$P^{-1}(x) := (y^{(1)}, \dots, y^{(s)}) = y$$

from $x \sim \mathcal{U}$ by successively determining

$$y^{(1)}$$
 using $x^{(1)} = F_1(y^{(1)})$,
 $y^{(2)}$ using $x^{(2)} = F_2(y^{(1)}, y^{(2)})$
:

using the bijections

$$F_{j}(t_{1},\ldots,t_{j}) := \frac{\int_{0}^{t_{j}} \int_{0}^{1} \cdots \int_{0}^{1} p(t_{1},\ldots,t_{j-1},\tau_{j},\ldots,\tau_{s}) d\tau_{j} \cdots d\tau_{s}}{\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} p(t_{1},\ldots,t_{j-1},\tau_{j},\ldots,\tau_{s}) d\tau_{j} \cdots d\tau_{s}}$$

• If $p(x) = \prod_{j=1}^{s} p^{(j)}(x^{(j)})$

$$F_{j}(t_{j}) = \frac{\int_{0}^{t_{j}} p^{(j)}(\tau) d\tau}{\int_{0}^{1} p^{(j)}(\tau) d\tau}$$

• Note: P^{-1} not unique, since there exist many mappings of the unit cube onto itself

Composition Method

• Simulation of composite probability density functions

$$p(x) = \sum_{i=1}^{K} w_i p_i(x)$$
 $w_i \in \mathbb{R}^+, \sum_{i=1}^{K} w_i = 1$

1. fix index i using $\xi \sim \mathcal{U}$

$$\sum_{j=1}^{i-1} w_j \le \xi < \sum_{j=1}^{i} w_j,$$

i.e. simulate a discrete random variable with $Prob(\omega_i) = w_i$

2. efficiently simulate p_i by

$$\frac{\xi - \sum_{j=1}^{i-1} w_j}{w_i} \in I$$

using only one random number

Composition Method

• Simulation of composite probability density functions

$$p(x) = \sum_{i=1}^{K} w_i p_i(x)$$
 $w_i \in \mathbb{R}^+, \sum_{i=1}^{K} w_i = 1$

1. fix index i using $\xi \sim \mathcal{U}$

$$\sum_{j=1}^{i-1} w_j \le \xi < \sum_{j=1}^{i} w_j,$$

i.e. simulate a discrete random variable with $Prob(\omega_i) = w_i$

2. efficiently simulate p_i by

$$\frac{\xi - \sum_{j=1}^{i-1} w_j}{w_i} \in I$$

using only one random number

- Note: The composition method can raise variance.
- Applications: Russian Roulette, stochastic evaluation of sums

Selection Methods

- Neumann rejection method, if $\|p\|_{\infty} < b < \infty$
 - Choose two independent realizations of uniform random numbers $\xi, \zeta \sim \mathcal{U}$
 - If $p(\xi) > b\zeta$ take ξ as a sample
 - else reject ξ and try again
- Efficiency depends on graph of \boldsymbol{p}

Selection Methods

- Neumann rejection method, if $\|p\|_{\infty} < b < \infty$
 - Choose two independent realizations of uniform random numbers $\xi, \zeta \sim \mathcal{U}$
 - If $p(\xi) > b\zeta$ take ξ as a sample
 - else reject ξ and try again
- Efficiency depends on graph of \boldsymbol{p}
- Generalized Neumann rejection method
 - density separable, i.e. $p(x) = p_1(x^{(1)}) \cdot p_2(x^{(2)})$
 - multidimensional inversion method on invertible part p_2
 - Neumann rejection method on p_1
Selection Methods

- Neumann rejection method, if $\|p\|_{\infty} < b < \infty$
 - Choose two independent realizations of uniform random numbers $\xi, \zeta \sim \mathcal{U}$
 - If $p(\xi) > b\zeta$ take ξ as a sample
 - else reject ξ and try again
- Efficiency depends on graph of \boldsymbol{p}
- Generalized Neumann rejection method
 - density separable, i.e. $p(x) = p_1(x^{(1)}) \cdot p_2(x^{(2)})$
 - multidimensional inversion method on invertible part p_2
 - Neumann rejection method on p_1
- Metropolis sampling algorithm
 - construct Markov chain with desired density p as stationary density

Selection Methods

- Neumann rejection method, if $\|p\|_{\infty} < b < \infty$
 - Choose two independent realizations of uniform random numbers $\xi, \zeta \sim \mathcal{U}$
 - If $p(\xi) > b\zeta$ take ξ as a sample
 - else reject ξ and try again
- Efficiency depends on graph of \boldsymbol{p}
- Generalized Neumann rejection method
 - density separable, i.e. $p(x) = p_1(x^{(1)}) \cdot p_2(x^{(2)})$
 - multidimensional inversion method on invertible part p_2
 - Neumann rejection method on p_1
- Metropolis sampling algorithm
 - construct Markov chain with desired density p as stationary density
- **Construction dimension**, i.e. random numbers required for one realization
 - now only finite expectation

Special Methods: Normal Distribution $\mathcal{N}(\mu, \sigma)$

• Probability density function

$$f_{\mathcal{N}(\mu,\sigma)}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- expectation μ
- variance σ^2
- Trick: Simulate a pair $(X, Y) \sim \mathcal{N}(0, 1) \times \overline{\mathcal{N}(0, 1)}$

$$f_{\mathcal{N}(0,1)}(x) \cdot f_{\mathcal{N}(0,1)}(y) dx dy = \frac{1}{2\pi} \cdot e^{-\frac{x^2 + y^2}{2}} dx dy$$

Special Methods: Normal Distribution $\mathcal{N}(\mu, \sigma)$

• Probability density function

$$f_{\mathcal{N}(\mu,\sigma)}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- expectation μ
- variance σ^2
- Trick: Simulate a pair $(X, Y) \sim \mathcal{N}(0, 1) \times \overline{\mathcal{N}(0, 1)}$

$$f_{\mathcal{N}(0,1)}(x) \cdot f_{\mathcal{N}(0,1)}(y) dx dy = \frac{1}{2\pi} \cdot e^{-\frac{x^2 + y^2}{2}} dx dy = \frac{1}{2\pi} \cdot e^{-\frac{x^2}{2}} r dr d\phi$$

Special Methods: Normal Distribution $\mathcal{N}(\mu, \sigma)$

• Probability density function

$$f_{\mathcal{N}(\mu,\sigma)}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- expectation μ
- variance σ^2
- Trick: Simulate a pair $(X, Y) \sim \mathcal{N}(0, 1) \times \mathcal{N}(0, 1)$

$$f_{\mathcal{N}(0,1)}(x) \cdot f_{\mathcal{N}(0,1)}(y) dx dy = \frac{1}{2\pi} \cdot e^{-\frac{x^2 + y^2}{2}} dx dy = \frac{1}{2\pi} \cdot e^{-\frac{x^2}{2}} r dr d\phi$$

• Polar method (Box-Müller)

W

$$(X,Y) = \sqrt{-2 \ln(1-\xi)} \cdot (\cos 2\pi \nu, \sin 2\pi \nu)$$

here $\xi, \nu \sim \mathcal{U}$ on [0, 1)

Simulation of Periodic Random Fields

• Typical realization procedure of $X : \Omega \to C(s, d)$

1. Realize Gaussian noise on s-dimensional regular grid K

 $ec{N}_\omega(ec{k}) \sim \left(\mathcal{N}(0,1) imes i \mathcal{N}(0,1)
ight)^d, \qquad ec{k} \in K$

2. Shape noise by spectrum S of phenomenon

$$\vec{\hat{X}}_{\omega}(\vec{k}) = S(\vec{k})\vec{N}_{\omega}(\vec{k})$$

3. Band limited evaluation by fast Fourier transform for each dimension

$$\vec{X}_{\omega}(\vec{x}) = \sum_{\vec{k} \in K} \vec{\hat{X}}_{\omega}(\vec{k}) e^{2\pi i \vec{k}^T \cdot \vec{x}} \qquad \in C(s,d)$$

Simulation of Periodic Random Fields

• Typical realization procedure of $X : \Omega \to C(s, d)$

1. Realize Gaussian noise on s-dimensional regular grid K

 $ec{N}_\omega(ec{k}) \sim \left(\mathcal{N}(0,1) imes i \mathcal{N}(0,1)
ight)^d, \qquad ec{k} \in K$

2. Shape noise by spectrum S of phenomenon

$$\vec{\hat{X}}_{\omega}(\vec{k}) = S(\vec{k})\vec{N}_{\omega}(\vec{k})$$

3. Band limited evaluation by fast Fourier transform for each dimension

$$\vec{X}_{\omega}(\vec{x}) = \sum_{\vec{k} \in K} \vec{\hat{X}}_{\omega}(\vec{k}) e^{2\pi i \vec{k}^T \cdot \vec{x}} \qquad \in C(s,d)$$

- Standard tensor product approach is exponential in $s = \dim \vec{x} = \dim \vec{k}$
 - \Rightarrow Curse of dimension

Curse of Dimension from Regular Grids

• Lattices of rank s with $N = n^s$ points from tensor product approach

0, 7	● 1, 7	● ^{2, 7}	3 , 7	● ^{4, 7}	● 5, 7	● 6, 7	● 7, 7
0, 6	1 , 6	• ^{2, 6}	3 , 6	● ^{4, 6}	• 5, 6	6 , 6	● 7, 6
0, 5	● 1, 5	• ^{2, 5}	3 , 5	• ^{4, 5}	● 5, 5	6 , 5	● 7, 5
0, 4	• ^{1, 4}	2 , 4	• ^{3, 4}	• ^{4, 4}	• 5, 4	6 , 4	• ^{7, 4}
0, 3	● ^{1, 3}	• ^{2, 3}	3 , 3	• ^{4, 3}	• 5, 3	6 , 3	• 7, 3
0, 2	● 1, 2	2 , 2	3 , 2	● ^{4, 2}	5 , 2	6 , 2	● 7, 2
0, 1	1 , 1	_ 2, 1	3 , 1	4 , 1	5 , 1	6 , 1	7 , 1
0, 0	1, 0	2, 0	3, 0	4, 0	5, 0	6, 0	7, 0

• $\mathcal{O}(n^s \log n)$ for s fast Fourier transforms

Curse of Dimension

• Theorem (Bakhvalov): Let C_M^r denote the set of functions on $[0, 1)^s$ with r continuous, bounded derivates, i.e.

$$\left| \frac{\partial^r f(x)}{\partial x_1^{\alpha_1} \cdots \partial x_s^{\alpha_s}} \right| \le M \text{ for } f \in C_M^r$$

for all $\alpha_1, \ldots, \alpha_s$, such that $\sum_{i=1}^s \alpha_i = r$. Then there exists a function $f \in C_M^r$ such that the error of approximating the integral of f using any N point quadrature rule with weights w_i and function values $f(x_i)$ is

$$\left| \int_{[0,1)^s} f(x) dx - \sum_{i=0}^{N-1} w_i f(x_i) \right| > k \cdot N^{-\frac{r}{s}}$$

where the constant k > 0 depends on M and r.

Curse of Discontinuities

• Consider

$$f(x) = \begin{cases} 1 & \text{if } x < X^* \\ 0 & \text{if } x \ge X^* \end{cases}$$

with $x_i = \frac{i}{n}$ and $x_i \neq X^*$. Then

$$\left| \int_0^1 f(x) dx - \frac{1}{n} \sum_{i=0}^{n-1} f(x_i) \right| \sim \frac{1}{n}$$

• $\mathcal{O}\left(N^{-\frac{1}{s}}\right)$ error for s dimensions

- **Goal:** Find ϵ -approximations to numerical problems
 - minimal cost algorithm for maximum error ϵ

- **Goal:** Find ϵ -approximations to numerical problems
 - minimal cost algorithm for maximum error ϵ
- Problem statement
 - Global information
 - * function classes
 - Local, partial information
 - * point sampling (standard information)
 - Model of computation
 - * real number model
 - * scalar products as class of algorithms

- Goal: Find ϵ -approximations to numerical problems
 - minimal cost algorithm for maximum error ϵ
- Problem statement
 - Global information
 - * function classes
 - Local, partial information
 - * point sampling (standard information)
 - Model of computation
 - * real number model
 - * scalar products as class of algorithms
- Analysis of *c*-complexity
 - lower bound by abstract structures
 - upper bound by algorithm
 - \Rightarrow match bounds

- **Goal:** Find ϵ -approximations to numerical problems
 - minimal cost algorithm for maximum error ϵ
- Problem statement: Deterministic numerical integration
 - Global information
 - * function class: $f \in C^r_M([0,1]^s)$
 - Local, partial information
 - * point sampling (standard information): f(x)
 - Model of computation
 - * real number model
 - * scalar products as class of algorithms: $\sum_{i=1}^{N(f)} w_i f(x_i)$
- Analysis of ϵ -complexity: $\mathcal{O}(N^{-\frac{r}{s}})$
 - Iower bound by abstract structures: Bakhvalov's theorem
 - upper bound by algorithm: Newton-Cotes quadrature formulas
 - \Rightarrow matching bounds

- **Goal:** Find ϵ -approximations to numerical problems
 - minimal cost algorithm for maximum error ϵ
- Problem statement: Stochastic numerical integration
 - Global information
 - * function class: $f \in L^2([0,1]^s)$
 - Local, partial information
 - * point sampling (standard information): f(x)
 - Model of computation
 - * real number model
 - * scalar products as class of algorithms: $\sum_{i=1}^{N(f)} w_i f(x_i)$
- Analysis of ϵ -complexity: $\mathcal{O}(N^{-\frac{1}{2}})$
 - lower bound by abstract structures
 - upper bound by algorithm: Monte Carlo integration
 - \Rightarrow matching bounds

- **Goal:** Find ϵ -approximations to numerical problems
 - minimal cost algorithm for maximum error ϵ
- Problem statement: Stochastic numerical integration
 - Global information
 - * function class: $f \in C_M^r$ ([0, 1]^s)
 - Local, partial information
 - * point sampling (standard information): f(x)
 - Model of computation
 - * real number model
 - * scalar products as class of algorithms: $\sum_{i=1}^{N(f)} w_i f(x_i)$
- Analysis of ϵ -complexity: $\mathcal{O}(N^{-\frac{r}{s}-\frac{1}{2}})$
 - lower bound by abstract structures
 - upper bound by algorithm: Monte Carlo with separation of the main part
 - \Rightarrow matching bounds

- Principle: Construct random variable with desired functional as expectation
- Numerical integration by random sampling

$$\operatorname{Prob}\left(\left\{\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < \frac{3\sigma(f)}{\sqrt{N}}\right\}\right) \approx 0.997 \qquad x_i \sim \mathcal{U}$$

- Principle: Construct random variable with desired functional as expectation
- Numerical integration by random sampling

$$\operatorname{Prob}\left(\left\{\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(\boldsymbol{x}_i)\right| < \frac{3\sigma(f)}{\sqrt{N}}\right\}\right) \approx 0.997 \qquad x_i \sim \mathcal{U}$$

- Simple, independent of dimension and smoothness, only $f \in L^{2^{1}}$
- Problems
 - Noise, slow convergence, difficult parallelization and reproducability
 - No real random numbers

- Principle: Construct random variable with desired functional as expectation
- Numerical integration by random sampling

$$\operatorname{Prob}\left(\left\{\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < \frac{3\sigma(f)}{\sqrt{N}}\right\}\right) \approx 0.997 \qquad x_i \sim \mathcal{U}$$

- Simple, independent of dimension and smoothness, only $f \in L^2$
- Problems
 - Noise, slow convergence, difficult parallelization and reproducability
 - No real random numbers
- Computational complexity

$$N \cdot t_S \cdot \sigma^2(f) = N \cdot t_S \cdot \mathbf{E} \left| \int_{I^s} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(\mathbf{x}_i) \right|^2$$

- Principle: Construct random variable with desired functional as expectation
- Numerical integration by random sampling

$$\operatorname{Prob}\left(\left\{\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < \frac{3\sigma(f)}{\sqrt{N}}\right\}\right) \approx 0.997 \qquad x_i \sim \mathcal{U}$$

- Simple, independent of dimension and smoothness, only $f \in L^2$
- Problems
 - Noise, slow convergence, difficult parallelization and reproducability
 - No real random numbers
- Computational complexity

$$N \cdot t_S \cdot \sigma^2(f) = N \cdot t_S \cdot \mathbf{E} \left| \int_{I^s} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(\mathbf{x}_i) \right|^2$$

• Increase efficiency, not only variance reduction !!!

 $\frac{1}{t_S\cdot\sigma^2(f)}$

• Unbiased estimator Y

$$\mathbf{E}Y = \int_{I^s} f(x) dx$$

• Unbiased estimator Y

$$\mathbf{E}Y = \int_{I^s} f(x) dx$$

• Bias of estimator Y

$$\beta_Y := \mathbf{E}Y - \int_{I^s} f(x) dx$$

• Unbiased estimator Y

$$\mathbf{E}Y = \int_{I^s} f(x) dx$$

• Bias of estimator Y

$$eta_Y := \mathbf{E}Y - \int_{I^s} f(x) dx$$

• Consistent estimator Y

Prob
$$\left(\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} y_i = \int_{I^s} f(x) dx\right) = 1$$

• Unbiased estimator Y

$$\mathbf{E}Y = \int_{I^s} f(x) dx$$

• Bias of estimator Y

$$eta_Y := \mathbf{E}Y - \int_{I^s} f(x) dx$$

• Consistent estimator Y

Prob
$$\left(\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} y_i = \int_{I^s} f(x) dx\right) = 1$$

• Error estimate of the estimate

$$\sigma^2 \left(\frac{1}{N} \sum_{i=0}^{N-1} f(\boldsymbol{x_i}) \right) \approx \frac{1}{N-1} \left[\sum_{i=0}^{N-1} \left(f(\boldsymbol{x_i}) \right)^2 - \frac{1}{N} \left(\sum_{i=0}^{N-1} f(\boldsymbol{x_i}) \right)^2 \right]$$

- adaptive sampling

Correlated Sampling: Separation of the Main Part

- Variance reduction by approximation, method of control variables
- Search g with

 $\|f - g\|_{\infty} < \tau \in \mathbb{R}^+$

$$\int_{I^s} f(x)dx = \underbrace{\int_{I^s} g(x)dx}_{\text{analytical}} + \underbrace{\int_{I^s} f(x) - g(x)dx}_{\text{Monte Carlo}}$$

Correlated Sampling: Separation of the Main Part

- Variance reduction by approximation, method of control variables
- Search g with

$$\|f - g\|_{\infty} < \tau \in \mathbb{R}^+$$

• Then

$$\int_{I^s} f(x)dx = \underbrace{\int_{I^s} g(x)dx}_{\text{analytical}} + \underbrace{\int_{I^s} f(x) - g(x)dx}_{\text{Monte Carlo}}$$
$$\approx \int_{I^s} g(x)dx + \frac{1}{N} \sum_{i=0}^{N-1} \left(f(x_i) - g(x_i)\right)$$

Note: The independent evaluation would destroy the advantages of the method.

• Variance of Monte Carlo part

$$\sigma^2(f-g) \le \int_{I^s} |f(x) - g(x)|^2 dx \le \tau^2$$

Correlated Sampling: Separation of the Main Part

- Variance reduction by approximation, method of control variables
- Search g with

$$\|f - g\|_{\infty} < \tau \in \mathbb{R}^+$$

Then

$$\int_{I^s} f(x)dx = \underbrace{\int_{I^s} g(x)dx}_{\text{analytical}} + \underbrace{\int_{I^s} f(x) - g(x)dx}_{\text{Monte Carlo}}$$
$$\approx \int_{I^s} g(x)dx + \frac{1}{N} \sum_{i=0}^{N-1} \left(f(x_i) - g(x_i)\right)$$

Note: The independent evaluation would destroy the advantages of the method.

• Variance of Monte Carlo part

$$\sigma^2(f-g) \le \int_{I^s} |f(x) - g(x)|^2 dx \le \tau^2$$

• Lower bound $\mathcal{O}\left(N^{-\frac{r}{s}-\frac{1}{2}}\right)$ for $f \in C^r_M$ ([0, 1)^s) obtained by Newton-Cotes methods

The Method of Dependent Tests

- Principle: Construct random field with desired function as expectation
- Method of dependent tests (parametric Monte Carlo integration)

$$g(y) := \int_{I^s} f(x, y) dx$$
$$\approx \frac{1}{N} \sum_{i=0}^{N-1} f(x_i, y)$$

for integro-approximation problems

The Method of Dependent Tests

- Principle: Construct random field with desired function as expectation
- Method of dependent tests (parametric Monte Carlo integration)

$$g(y) := \int_{I^s} f(x, y) dx$$

 $\approx \frac{1}{N} \sum_{i=0}^{N-1} f(\mathbf{x}_i, y)$

for integro-approximation problems

• Computational complexity

$$N \cdot t_S \cdot \mathbf{E} \left\| \int_{I^s} f(x, y) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(\mathbf{x}_i, y) \right\|_{L^2}^2$$

The Method of Dependent Tests

- Principle: Construct random field with desired function as expectation
- Method of dependent tests (parametric Monte Carlo integration)

$$g(y) := \int_{I^s} f(x, y) dx$$
$$\approx \frac{1}{N} \sum_{i=0}^{N-1} f(\mathbf{x}_i, y)$$

for integro-approximation problems

• Computational complexity

$$N \cdot t_S \cdot \mathbf{E} \left\| \int_{I^s} f(x, y) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(\mathbf{x}_i, y) \right\|_{L^2}^2$$

- Note: One single set $(\mathbf{x}_i)_{i=0}^{N-1} \subset I^s$ of i.i.d. random samples
 - \Rightarrow exploit induced grid structure
- Examples
 - accumulation buffer
 - multilevel method of dependent tests

Hierarchical Function Representation

• Use multilevel function representation [Heinrich 1998]

$$P_m g = P_0 g + \sum_{l=1}^m [P_l - P_{l-1}]g$$

for an arbitrary sequence $(P_l)_{l=0}^m$ of interpolation operators

• Linear Lagrange interpolation of $g_k := g(y_k) = (P_m g)(y_k)$ in $y_k = \frac{k}{2^m}$

- Linear Lagrange interpolation of $g_k := g(y_k) = (P_m g)(y_k)$ in $y_k = \frac{k}{2^m}$
- Method of dependent tests

$$G_k^l := \frac{1}{N_l} \sum_{i=0}^{N_l-1} f(x_i, y_k) \text{ with } N_l := N \cdot \frac{2^m + 1}{2^l + 1} \cdot 2^{\alpha l} \cdot \frac{2^{\alpha} - 1}{2^{\alpha(m+1)} - 1}$$

- Linear Lagrange interpolation of $g_k := g(y_k) = (P_m g)(y_k)$ in $y_k = \frac{k}{2^m}$
- Method of dependent tests

$$G_k^l := \frac{1}{N_l} \sum_{i=0}^{N_l-1} f(x_i, y_k) \text{ with } N_l := N \cdot \frac{2^m + 1}{2^l + 1} \cdot 2^{\alpha l} \cdot \frac{2^\alpha - 1}{2^{\alpha(m+1)} - 1}$$

- Compute approximation $g_i \approx \hat{g}_i$
 - boundary $g_0 \approx \hat{g}_0 := G_0^0$ and $g_{2^m} \approx \hat{g}_{2^m} := G_{2^m}^0$
 - refinement

$$g_{(2k+1)2^{m-l}} = \underbrace{\frac{g_{k2^{m-(l-1)}} + g_{(k+1)2^{m-(l-1)}}}{2}}_{\text{Predictor}} + \underbrace{\lambda_k^l}_{\text{Update}}$$

- Linear Lagrange interpolation of $g_k := g(y_k) = (P_m g)(y_k)$ in $y_k = \frac{k}{2^m}$
- Method of dependent tests

$$G_k^l := \frac{1}{N_l} \sum_{i=0}^{N_l-1} f(x_i, y_k) \text{ with } N_l := N \cdot \frac{2^m + 1}{2^l + 1} \cdot 2^{\alpha l} \cdot \frac{2^\alpha - 1}{2^{\alpha(m+1)} - 1}$$

- Compute approximation $g_i \approx \hat{g}_i$
 - boundary $g_0 \approx \hat{g}_0 := G_0^0$ and $g_{2^m} \approx \hat{g}_{2^m} := G_{2^m}^0$
 - refinement

$$g_{(2k+1)2^{m-l}} = \underbrace{\frac{g_{k2^{m-(l-1)}} + g_{(k+1)2^{m-(l-1)}}}{2}}_{\text{Predictor}} + \underbrace{\frac{\lambda_k^l}{Update}}_{\text{Update}}$$

$$pprox \widehat{g}_{(2k+1)2^{m-l}}$$

- Linear Lagrange interpolation of $g_k := g(y_k) = (P_m g)(y_k)$ in $y_k = \frac{k}{2^m}$
- Method of dependent tests

$$G_k^l := \frac{1}{N_l} \sum_{i=0}^{N_l-1} f(x_i, y_k) \text{ with } N_l := N \cdot \frac{2^m + 1}{2^l + 1} \cdot 2^{\alpha l} \cdot \frac{2^\alpha - 1}{2^{\alpha(m+1)} - 1}$$

- Compute approximation $g_i \approx \hat{g}_i$
 - boundary $g_0 \approx \hat{g}_0 := G_0^0$ and $g_{2^m} \approx \hat{g}_{2^m} := G_{2^m}^0$
 - refinement

$$g_{(2k+1)2^{m-l}} = \underbrace{\frac{g_{k2^{m-(l-1)}} + g_{(k+1)2^{m-(l-1)}}}{2}}_{\text{Predictor}} + \underbrace{\lambda_k^l}_{\text{Update}}}_{\text{Update}}$$

$$\approx \hat{g}_{(2k+1)2^{m-l}} := \frac{\hat{g}_{k2^{m-(l-1)}} + \hat{g}_{(k+1)2^{m-(l-1)}}}{2}}{2}$$

$$+ \underbrace{G_{(2k+1)2^{m-l}}^l - \underbrace{\frac{G_{(2k)2^{m-l}}^l + G_{(2k+2)2^{m-l}}^l}{2}}_{=:\tilde{\lambda}_k^l}}_{=:\tilde{\lambda}_k^l}$$
Implementation

• In-place reconstruction

- Individual functionals
 - same high variance
 - same sampling rate, even if correlated
 - converged samples

- Individual functionals
 - same high variance
 - same sampling rate, even if correlated
 - converged samples
- One function
 - small detail contribution if correlated

$$\tilde{\lambda}_{k}^{l} = \frac{1}{N_{l}} \sum_{i=0}^{N_{l}-1} \left(f(\boldsymbol{x}_{i}, y_{(2k+1)2^{m-l}}) - \frac{f(\boldsymbol{x}_{i}, y_{(2k)2^{m-l}}) + f(\boldsymbol{x}_{i}, y_{(2k+2)2^{m-l}})}{2} \right)$$

- adapt sampling rate N_l to support size
 - \Rightarrow reduced computational cost by exploiting correlation

- Individual functionals
 - same high variance
 - same sampling rate, even if correlated
 - converged samples
- One function
 - small detail contribution if correlated

$$\tilde{\lambda}_{k}^{l} = \frac{1}{N_{l}} \sum_{i=0}^{N_{l}-1} \left(f(\boldsymbol{x}_{i}, y_{(2k+1)2^{m-l}}) - \frac{f(\boldsymbol{x}_{i}, y_{(2k)2^{m-l}}) + f(\boldsymbol{x}_{i}, y_{(2k+2)2^{m-l}})}{2} \right)$$

- adapt sampling rate N_l to support size
 - \Rightarrow reduced computational cost by exploiting correlation
- Localization heuristics
 - range check
 - predictor-corrector difference
 - relative error

- Individual functionals
 - same high variance
 - same sampling rate, even if correlated
 - converged samples
- One function
 - small detail contribution if correlated

$$\tilde{\lambda}_{k}^{l} = \frac{1}{N_{l}} \sum_{i=0}^{N_{l}-1} \left(f(\boldsymbol{x}_{i}, y_{(2k+1)2^{m-l}}) - \frac{f(\boldsymbol{x}_{i}, y_{(2k)2^{m-l}}) + f(\boldsymbol{x}_{i}, y_{(2k+2)2^{m-l}})}{2} \right)$$

- adapt sampling rate N_l to support size
 - \Rightarrow reduced computational cost by exploiting correlation
- Localization heuristics
 - range check
 - predictor-corrector difference
 - relative error
- With lifting scheme on arbitrary topology and boundaries

Numerical Results

• Integral transformation by introducing a probability density p

$$\int_{I^s} f(x)dx = \int_{I^s} f(x)\frac{p(x)}{p(x)}dx = \int_{I^s} \frac{f(y)}{p(y)}dP(y) \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(y_i)}{p(y_i)} \qquad y_i \sim p$$

• Integral transformation by introducing a probability density p

$$\int_{I^s} f(x)dx = \int_{I^s} f(x)\frac{p(x)}{p(x)}dx = \int_{I^s} \frac{f(y)}{p(y)}dP(y) \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(y_i)}{p(y_i)} \qquad y_i \sim p$$

• Variance

$$\sigma^2\left(\frac{f}{p}\right) = \int_{I^s} \frac{f^2(x)}{p(x)} dx - \left(\int_{I^s} f(x) dx\right)^2$$

• Integral transformation by introducing a probability density p

$$\int_{I^s} f(x)dx = \int_{I^s} f(x)\frac{p(x)}{p(x)}dx = \int_{I^s} \frac{f(y)}{p(y)}dP(y) \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(y_i)}{p(y_i)} \qquad y_i \sim p$$

• Variance

$$\sigma^2\left(\frac{f}{p}\right) = \int_{I^s} \frac{f^2(x)}{p(x)} dx - \left(\int_{I^s} f(x) dx\right)^2$$

• Often f(x) = g(x)p(x)

$$\int_{I^s} f(x)dx = \int_{I^s} g(x)p(x)dx = \int_{I^s} g(y)dP(y) \approx \frac{1}{N} \sum_{i=0}^{N-1} g(y_i) \qquad y_i \sim p$$

• Integral transformation by introducing a probability density p

$$\int_{I^s} f(x)dx = \int_{I^s} f(x)\frac{p(x)}{p(x)}dx = \int_{I^s} \frac{f(y)}{p(y)}dP(y) \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(y_i)}{p(y_i)} \qquad y_i \sim p$$

• Variance

$$\sigma^2\left(\frac{f}{p}\right) = \int_{I^s} \frac{f^2(x)}{p(x)} dx - \left(\int_{I^s} f(x) dx\right)^2$$

• Often f(x) = g(x)p(x)

$$\int_{I^s} f(x)dx = \int_{I^s} g(x)p(x)dx = \int_{I^s} g(y)dP(y) \approx \frac{1}{N} \sum_{i=0}^{N-1} g(y_i) \qquad y_i \sim p$$

• Often separating the main part is more efficient than importance sampling

Replication: Independent and Dependent Sampling

• Replication heuristic

$$\left(w_j, R_j\right)_{j=0}^{M-1}$$

- weight functions $w_j(x) : I^s \to \mathbb{R}$, and
- mappings $R_j(x)$: $I^s \to I^s$ so that

$$\int_{I^s} f(x)dx = \int_{I^s} \sum_{j=0}^{M-1} w_j(x) f(R_j(x))dx = \sum_{j=0}^{M-1} \int_{I^s} w_j(x) f(R_j(x))dx$$

Replication: Independent and Dependent Sampling

• Replication heuristic

$$\left(w_j, R_j\right)_{j=0}^{M-1}$$

- weight functions $w_j(x) : I^s \to \mathbb{R}$, and
- mappings $R_j(x)$: $I^s \to I^s$ so that

$$\int_{I^s} f(x)dx = \int_{I^s} \sum_{j=0}^{M-1} w_j(x) f(R_j(x))dx = \sum_{j=0}^{M-1} \int_{I^s} w_j(x) f(R_j(x))dx$$

• Either independent integral estimation

$$\sum_{j=0}^{M-1} \int_{I^s} w_j(x) f(R_j(x)) dx \approx \sum_{j=0}^{M-1} \frac{1}{N_j} \sum_{i=0}^{N_j-1} w_j(x_{i,j}) f(R_j(x_{i,j})),$$

Replication: Independent and Dependent Sampling

• Replication heuristic

$$\left(w_j, R_j\right)_{j=0}^{M-1}$$

- weight functions $w_j(x) : I^s \longrightarrow \mathbb{R}$, and
- mappings $R_j(x) : I^s \to I^s$ so that

$$\int_{I^s} f(x)dx = \int_{I^s} \sum_{j=0}^{M-1} w_j(x) f(R_j(x))dx = \sum_{j=0}^{M-1} \int_{I^s} w_j(x) f(R_j(x))dx$$

• Either independent integral estimation

$$\sum_{j=0}^{M-1} \int_{I^s} w_j(x) f(R_j(x)) dx \approx \sum_{j=0}^{M-1} \frac{1}{N_j} \sum_{i=0}^{N_j-1} w_j(x_{i,j}) f(R_j(x_{i,j})),$$

or dependent, i.e. correlated sampling

$$\int_{I^s} \sum_{j=0}^{M-1} w_j(x) f(R_j(x)) dx \approx \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} w_j(x_i) f(R_j(x_i)),$$

Replication Heuristics: Multiple importance sampling

- Simple importance sampling can cause infinite variance
- For a set of techniques p_j , i.e. $R_j := P_j^{-1}$, the weights are

Heuristic	independent sampling	dependent sampling
Power ($eta \in { m I\!R^+}$)	$w_j(x) := \frac{N_j^{\beta} p_j^{\beta}(x)}{\sum_{k=0}^{M-1} N_k^{\beta} p_k^{\beta}(x)} \cdot \frac{1}{p_j(x)}$	$w_j(x) = \frac{p_j^\beta(x)}{\sum_{k=0}^{M-1} p_k^\beta(x)} \cdot \frac{1}{p_j(x)}$
Balance ($\beta = 1$)	$w_j(x) := \frac{N_j}{\sum_{k=0}^{M-1} N_k p_k(x)}$	$w_j(x) = \frac{1}{\sum_{k=0}^{M-1} p_k(x)}$
Uniform ($\beta = 0$)	$w_j(x) := \frac{N_j}{p_j(x) \sum_{k=0}^{M-1} N_k}$	$w_j(x) = \frac{1}{Mp_j(x)}$

Replication Heuristics: Multiple importance sampling

- Simple importance sampling can cause infinite variance
- For a set of techniques p_j , i.e. $R_j := P_j^{-1}$, the weights are

Heuristic	independent sampling	dependent sampling
Power ($eta \in { m I\!R}^+$)	$w_j(x) := \frac{N_j^{\beta} p_j^{\beta}(x)}{\sum_{k=0}^{M-1} N_k^{\beta} p_k^{\beta}(x)} \cdot \frac{1}{p_j(x)}$	$w_j(x) = \frac{p_j^\beta(x)}{\sum_{k=0}^{M-1} p_k^\beta(x)} \cdot \frac{1}{p_j(x)}$
Balance ($\beta = 1$)	$w_j(x) := \frac{N_j}{\sum_{k=0}^{M-1} N_k p_k(x)}$	$w_j(x) = \frac{1}{\sum_{k=0}^{M-1} p_k(x)}$
Uniform ($\beta = 0$)	$w_j(x) := \frac{N_j}{p_j(x) \sum_{k=0}^{M-1} N_k}$	$w_j(x) = \frac{1}{Mp_j(x)}$

• Problem of insufficient techniques

- Partition of integration domain $I^s = \bigcup_{k=1}^{K} A_k$
- Monte Carlo integration on each of the disjoint strata A_k

$$\int_{I^s} f(x) dx = \sum_{k=1}^K \int_{A_k} f(x) dx$$

- Partition of integration domain $I^s = \bigcup_{k=1}^{K} A_k$
- Monte Carlo integration on each of the disjoint strata A_k

$$\int_{I^s} f(x) dx = \sum_{k=1}^K \int_{A_k} f(x) dx \approx \sum_{k=1}^K \frac{\lambda_s(A_k)}{N_k} \sum_{i=0}^{N_k-1} f(x_{k,i})$$

- Partition of integration domain $I^s = \bigcup_{k=1}^{K} A_k$
- Monte Carlo integration on each of the disjoint strata A_k

$$\int_{I^{s}} f(x) dx = \sum_{k=1}^{K} \int_{A_{k}} f(x) dx \approx \sum_{k=1}^{K} \frac{\lambda_{s}(A_{k})}{N_{k}} \sum_{i=0}^{N_{k}-1} f(x_{k,i})$$

• Variance reduction for standard choice $N_k = \lambda_s(A_k)N$

$$\sum_{k=1}^{K} \frac{\lambda_s(A_k)}{N_k} \int_{A_k} \left(f(y) - \frac{1}{\lambda_s(A_k)} \int_{A_k} f(x) dx \right)^2 dy \le \frac{\sigma^2(f)}{N}$$

 \Rightarrow at least as good as uniform random sampling

- Partition of integration domain $I^s = \bigcup_{k=1}^{K} A_k$
- Monte Carlo integration on each of the disjoint strata A_k

$$\int_{I^{s}} f(x) dx = \sum_{k=1}^{K} \int_{A_{k}} f(x) dx \approx \sum_{k=1}^{K} \frac{\lambda_{s}(A_{k})}{N_{k}} \sum_{i=0}^{N_{k}-1} f(x_{k,i})$$

• Variance reduction for standard choice $N_k = \lambda_s(A_k)N$

$$\sum_{k=1}^{K} \frac{\lambda_s(A_k)}{N_k} \int_{A_k} \left(f(y) - \frac{1}{\lambda_s(A_k)} \int_{A_k} f(x) dx \right)^2 dy \le \frac{\sigma^2(f)}{N}$$

- \Rightarrow at least as good as uniform random sampling
- $\lambda_s(A_k) = \frac{1}{N}$ yields

$$\int_{I^s} f(x) dx \approx \frac{1}{N} \sum_{k=0}^{N-1} f(x_k | A_k)$$

- Lloyd-relaxation
- jittered sampling

- Algorithm (similar to vector quantization)
 - Take N random initial points
 - Loop: Move each point into the center of gravity of its Voronoi-cell
- Periodic boundary conditions
- + Fast convergence to regular patterns
 - \Rightarrow Small number of relaxation steps yields blue-noise-samples
- Expensive iteration step
- No incremental sampling

Stratification: Jittered Sampling

• Division of each axis into N_j intervals for $N = \prod_{j=1}^{s} N_j$

- Increased efficiency by increased uniformity of distribution
- Problem: *N* must be factorized

Latin Hypercube Sampling (N-Rooks Sampling)

• Using s uniform random permutations $\sigma_N^{(j)}$ of size N yields

Latin Hypercube Sampling (N-Rooks Sampling)

• Using s uniform random permutations $\sigma_N^{(j)}$ of size N yields

• Cannot be much worse than uniform random sampling

$$\sigma^2(f_{\mathsf{LHS}}) \le rac{N}{N-1} \sigma^2(f_{\mathsf{MC}})$$

Replication Heuristics: Stratification

- Heuristic with
 - weights $w_j = \lambda_s(A_j)$, and
 - mappings $R_j: I^s \to A_j$
- Independent sampling for $N_j = \lambda_s(A_j)N$

$$\int_{I^s} f(x) dx \approx \sum_{j=0}^{M-1} \frac{1}{N_j} \sum_{i=0}^{N_j-1} \lambda_s(A_j) f(R_j(x_{i,j})) = \frac{1}{N} \sum_{j=0}^{M-1} \sum_{i=0}^{N_j-1} f(R_j(x_{i,j}))$$

• Dependent sampling

$$\int_{I^s} f(x) dx \approx \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \lambda_s(A_j) f(R_j(\boldsymbol{x_i}))$$

Replication Heuristics: Regularization

• Antithetic variables

$$\int_{I} f(x) dx = \int_{I} \frac{1}{2} f(x) + \frac{1}{2} f(1-x) dx \approx \frac{1}{2N} \sum_{i=0}^{N-1} \left(f(x_i) + f(1-x_i) \right)$$

- sample points doubled and symmetrized
- more efficient if variance reduced to less than half of original variance
- good for monotonic problems
- effect killed by independent sampling !

Replication Heuristics: Regularization

• Antithetic variables

$$\int_{I} f(x) dx = \int_{I} \frac{1}{2} f(x) + \frac{1}{2} f(1-x) dx \approx \frac{1}{2N} \sum_{i=0}^{N-1} \left(f(x_i) + f(1-x_i) \right)$$

- sample points doubled and symmetrized
- more efficient if variance reduced to less than half of original variance
- good for monotonic problems
- effect killed by independent sampling !
- Combining stratification

$$f_{\text{strat}}(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(1 - \frac{x}{2}\right) \right)$$

and antithetic variables

$$\int_{I} f_{\text{strat, anti}}(x) dx \approx \frac{1}{4N} \sum_{i=0}^{N-1} \left(f\left(\frac{x_i}{2}\right) + f\left(1 - \frac{x_i}{2}\right) + f\left(\frac{1}{2} + \frac{x_i}{2}\right) + f\left(\frac{1}{2} - \frac{x_i}{2}\right) \right)$$

Splitting

• Instead of

$$\int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx \approx \frac{1}{N} \sum_{i=0}^{N-1} f(x_i, y_i)$$

computational complexity can be improved by

$$\int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx \approx \frac{1}{NM} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} f(x_i, y_{i,j})$$

- Low pass filtering of problematic dimensions of the integrand
 - e.g. splitting for shadow rays

Replication Heuristics: Dependent Splitting

• Splitting considered as a replication heuristic restricted to selected dimensions

$$\int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx = \int_{I^{s_1}} \int_{I^{s_2}} \sum_{j=0}^{M-1} w_j(x, y) f(x, R_j(x, y)) dy dx$$
$$\approx \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} w_j(x_i, y_i) f(x_i, R_j(x_i, y_i)) dy dx$$

- Realize splitting much more efficiently by e.g.
 - stratification heuristic (independent sampling)
 - randomized quadratures (dependent sampling)

Summary

- Simulation of random variables and fields
- Monte Carlo integration
- Method of dependent tests
- Efficiency and time complexity
- Dependent sampling
- Replication

Summary

- Simulation of random variables and fields
- Monte Carlo integration
- Method of dependent tests
- Efficiency and time complexity
- Dependent sampling
- Replication

\Rightarrow Use as few random numbers as possible

Beyond Monte Carlo

- Day 1: Monte Carlo
- Day 2: Quasi-Monte Carlo points
- Day 3: Quasi-Monte Carlo integration
- Day 4: Monte Carlo extensions of quasi-Monte Carlo
- Day 5: Applications to computer graphics

Day 2: Quasi-Monte Carlo Points

- Discrepancy
- Deterministic low discrepancy
 - Halton and Hammersley points
 - Scrambling
 - (t, m, s)-nets and (t, s)-sequences
 - Digital constructions
 - Good lattice points

• **Definition:** The *discrepancy*

$$D(P_N, \mathcal{A}) := \sup_{A \in \mathcal{A}} \left| \lambda_s(A) - \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i) \right|$$

is a measure of the uniform distribution of a given point set $P_N = \{x_0, \ldots, x_{N-1}\}$ with respect to non-empty families \mathcal{A} of Lebesgue-measurable subsets of I^s . χ_A is the characteristic function of the set A.

• **Definition:** The *discrepancy*

$$D(P_N, \mathcal{A}) := \sup_{A \in \mathcal{A}} \left| \lambda_s(A) - \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i) \right|$$

is a measure of the uniform distribution of a given point set $P_N = \{x_0, \ldots, x_{N-1}\}$ with respect to non-empty families \mathcal{A} of Lebesgue-measurable subsets of I^s . χ_A is the characteristic function of the set A.

• $D(P_N, \mathcal{A}) \sim$ worst case integration error

• **Definition:** The *discrepancy*

$$D(P_N, \mathcal{A}) := \sup_{A \in \mathcal{A}} \left| \lambda_s(A) - \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i) \right|$$

is a measure of the uniform distribution of a given point set $P_N = \{x_0, \ldots, x_{N-1}\}$ with respect to non-empty families \mathcal{A} of Lebesgue-measurable subsets of I^s . χ_A is the characteristic function of the set A.

- $D(P_N, \mathcal{A}) \sim$ worst case integration error
- (Star-) discrepancy

$$D^*(P_N) := D\left(P_N, \left\{A | A = \prod_{j=1}^s [0, a_j) \subset I^s\right\}\right)$$

• Extreme discrepancy

$$D(P_N) := D\left(P_N, \left\{A | A = \prod_{j=1}^s [a_j, b_j) \subset I^s\right\}\right)$$

• **Definition:** The *discrepancy*

$$D(P_N, \mathcal{A}) := \sup_{A \in \mathcal{A}} \left| \lambda_s(A) - \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i) \right|$$

is a measure of the uniform distribution of a given point set $P_N = \{x_0, \ldots, x_{N-1}\}$ with respect to non-empty families \mathcal{A} of Lebesgue-measurable subsets of I^s . χ_A is the characteristic function of the set A.

- $D(P_N, A) \sim$ worst case integration error
- (Star-) discrepancy

$$D^*(P_N) := D\left(P_N, \left\{A|A = \prod_{j=1}^s [0, a_j) \subset I^s\right\}\right)$$

• Extreme discrepancy

$$D(P_N) := D\left(P_N, \left\{A | A = \prod_{j=1}^s [a_j, b_j) \subset I^s\right\}\right)$$

• The (Star-) discrepancy and extreme discrepancy are anisotropic measures

Discrepancy Bounds

• Case s = 1: Discrepancy is size of largest gap

$$egin{array}{rll} D^*(P_N)&\geq&rac{1}{2N}\ D(P_N)&\geq&rac{1}{N} \end{array}$$

• General case

$$D^*(P_N) \ge B_s \frac{\log^{\frac{s-1}{2}} N}{N}$$

Discrepancy Bounds

• Case s = 1: Discrepancy is size of largest gap

$$egin{array}{rll} D^*(P_N) &\geq & \displaystylerac{1}{2N} \ D(P_N) &\geq & \displaystylerac{1}{N} \end{array}$$

• General case

$$D^*(P_N) \ge B_s \frac{\log^{\frac{s-1}{2}} N}{N}$$

• Discrepancy of random points

$$D^*(P_N^{\mathsf{random}}) \in \mathcal{O}\left(\sqrt{\frac{\log \log N}{N}}\right)$$

• Discrepancy of regular grids

$$D^*(P_N) \in \mathcal{O}\left(rac{1}{\sqrt[s]{N}}
ight)$$

Discrepancy Bounds

• Case s = 1: Discrepancy is size of largest gap

$$D^*(P_N) \geq rac{1}{2N}$$

 $D(P_N) \geq rac{1}{N}$

• General case

$$D^*(P_N) \ge B_s \frac{\log^{\frac{s-1}{2}} N}{N}$$

• Discrepancy of random points

$$D^*(P_N^{\mathsf{random}}) \in \mathcal{O}\left(\sqrt{\frac{\log \log N}{N}}\right)$$

• Discrepancy of regular grids

$$D^*(P_N) \in \mathcal{O}\left(rac{1}{\sqrt[s]{N}}
ight)$$

- includes points taken from space filling curves like e.g. the Hilbert curve

Uniform and Completely Uniform Distribution

• By the theory of uniform distribution (x_i) is uniformly distributed in I^s $\Leftrightarrow \lim_{N \to \infty} D(P_N) = 0$ $\Leftrightarrow \lim_{N \to \infty} D^*(P_N) = 0$

Uniform and Completely Uniform Distribution

• By the theory of uniform distribution

 $(x_i) \text{ is uniformly distributed in } I^s \\ \Leftrightarrow \lim_{N \to \infty} D(P_N) = 0 \\ \Leftrightarrow \lim_{N \to \infty} D^*(P_N) = 0$

- Definition: A sequence (x_i) of numbers in I is completely uniformly distributed if for every s ∈ ℕ the sequence of points (x_n, x_{n+1},..., x_{n+s-1}) is uniformly distributed in I^s for n ∈ ℕ₀.
- Formalization of independence

Quasi-Monte Carlo Point Sets

• Low discrepancy means

 $D^*(P_N) \in \mathcal{O}\left(rac{\log^s N}{N}
ight)$

Quasi-Monte Carlo Point Sets

• Low discrepancy means

$$D^*(P_N) \in \mathcal{O}\left(\frac{\log^s N}{N}\right)$$

• Low discrepancy sequences cannot be completely uniformly distributed

Quasi-Monte Carlo Point Sets

• Low discrepancy means

$$D^*(P_N) \in \mathcal{O}\left(\frac{\log^s N}{N}\right)$$

• Low discrepancy sequences cannot be completely uniformly distributed

- Quasi-Monte Carlo points means
 - low discrepancy and
 - deterministic points
 - \Rightarrow Discrete density approximation of uniform distribution $\mathcal U$

• Radical inverse (van der Corput sequence) in base *b*

$$i = \sum_{j=0}^{\infty} a_j(i)b^j \mapsto \Phi_b(i) := \sum_{j=0}^{\infty} a_j(i)b^{-j-1}$$

• Radical inverse (van der Corput sequence) in base *b*

$$i = \sum_{j=0}^{\infty} a_j(i)b^j \mapsto \Phi_b(i) := \sum_{j=0}^{\infty} a_j(i)b^{-j-1}$$

Note: The radical inverses are not completely uniform distributed !!!

• Radical inverse (van der Corput sequence) in base *b*

$$i = \sum_{j=0}^{\infty} a_j(i)b^j \mapsto \Phi_b(i) := \sum_{j=0}^{\infty} a_j(i)b^{-j-1}$$

Note: The radical inverses are not completely uniform distributed !!!

• Halton sequence $x_i := (\Phi_{b_1}(i), \dots, \Phi_{b_s}(i))$ where b_i is the *i*-th prime number

$$D^*(P_N^{\text{Halton}}) < \frac{s}{N} + \frac{1}{N} \prod_{j=1}^s \left(\frac{b_j - 1}{2 \log b_j} \log N + \frac{b_j + 1}{2} \right)$$

• Radical inverse (van der Corput sequence) in base *b*

$$i = \sum_{j=0}^{\infty} a_j(i)b^j \mapsto \Phi_b(i) := \sum_{j=0}^{\infty} a_j(i)b^{-j-1}$$

Note: The radical inverses are not completely uniform distributed !!!

• Halton sequence $x_i := (\Phi_{b_1}(i), \dots, \Phi_{b_s}(i))$ where b_i is the *i*-th prime number

$$D^{*}(P_{N}^{\mathsf{Halton}}) < \frac{s}{N} + \frac{1}{N} \prod_{j=1}^{s} \left(\frac{b_{j} - 1}{2 \log b_{j}} \log N + \frac{b_{j} + 1}{2} \right)$$

• Hammersley point set $x_i := \left(\frac{i}{N}, \Phi_{b_1}(i), \dots, \Phi_{b_{s-1}}(i)\right)$

$$D^{*}(P_{N}^{\mathsf{Hammersley}}) < \frac{s}{N} + \frac{1}{N} \prod_{j=1}^{s-1} \left(\frac{b_{j} - 1}{2 \log b_{j}} \log N + \frac{b_{j} + 1}{2} \right)$$

Algorithm: Radical Inversion

```
double RadicalInverse(const int Base, int i)
ł
 double Digit, Radical, Inverse;
 Digit = Radical = 1.0 / (double) Base;
  Inverse = 0.0;
 while(i)
    Inverse += Digit * (double) (i % Base);
    Digit *= Radical;
   i /= Base;
```

return Inverse;

Algorithm: Incremental Radical Inversion

```
double NextRadicalInverse(const double Radical, double Inverse)
// Radical = 1.0 / Base
   const double AlmostOne = 1.0 - 1e-10;
   double NextInverse, Digit1, Digit2;
  NextInverse = Inverse + Radical;
   if(NextInverse < AlmostOne)</pre>
      return NextInverse;
   else
      Digit1 = Radical;
      Digit2 = Radical * Radical;
      while(Inverse + Digit2 >= AlmostOne)
         Digit1 = Digit2;
         Digit2 *= Radical;
      return Inverse + (Digit1 - 1.0) + Digit2;
```

Other Discrepancies

- Isotropic discrepancy $J(P_N)$
 - \mathcal{A} is family of all convex subsets of I^s
Other Discrepancies

- Isotropic discrepancy $J(P_N)$
 - \mathcal{A} is family of all convex subsets of I^s
 - by

 $D^*(P_N) \leq D(P_N) \leq 2^s D^*(P_N)$ $D(P_N) \leq J(P_N) \leq 4s D(P_N)^{1/s}$

* upper bound

 $J(P_N) \le 4sD(P_N)^{1/s} \le 4s(2^sD^*(P_N))^{1/s} = 8sD^*(P_N)^{1/s}$

* lower bound

 $\overline{J(P_N) \ge D(P_N) \ge D^*(P_N)}$

Other Discrepancies

- Isotropic discrepancy $J(P_N)$
 - \mathcal{A} is family of all convex subsets of $I^{s^{\parallel}}$
 - by

 $D^*(P_N) \leq D(P_N) \leq 2^s D^*(P_N)$ $D(P_N) \leq J(P_N) \leq 4s D(P_N)^{1/s}$

* upper bound

 $J(P_N) \le 4sD(\overline{P_N})^{1/s} \le 4s(2^sD^*(P_N))^{1/s} = 8sD^*(P_N)^{1/s}$

* lower bound

 $J(P_N) \ge D(P_N) \ge D^*(P_N)$

- Triangle discrepancy
- Edge discrepancy

Computing Discrepancies

• *L*₂-norm based discrepancy

$$D_{2}^{*}(P_{N}) := \sqrt{\int_{I^{s}} \left(\lambda_{s}(A(x)) - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A(x)}(x_{i})\right)^{2} dx}$$

where $A(x) = \prod_{j=1}^{s} [0, x^{(j)})$

• Can be efficiently computed in contrast to L_{∞} -norm based discrepancies

Computing Discrepancies

• *L*₂-norm based discrepancy

$$D_{2}^{*}(P_{N}) := \sqrt{\int_{I^{s}} \left(\lambda_{s}(A(x)) - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A(x)}(x_{i})\right)^{2} dx}$$

where $A(x) = \prod_{j=1}^{s} [0, x^{(j)})$

- Can be efficiently computed in contrast to L_{∞} -norm based discrepancies
- Numerical example: Triangular discrepancy

$D(P_N, \mathcal{T})$	$\leq J(P_N)$	≤ 16	$D^*(P_N)$
-----------------------	---------------	-----------	------------

Ν	10000 random triangles	100000 random triangles	theoretical bound
4	0.539712	0.591708	16.971
16	0.18326	0.230355	9.381
64	0.0660696	0.0777368	5.099
256	0.032454	0.0364673	2.739
1024	0.0118695	0.0178952	1.458
4096	0.00521621	0.00715305	0.771

Correlation Problems of Projections

• Dimensions 7 and 8 of the Halton sequence

Scrambling Permutations by Faure

• Scrambled radical inverse

$$i = \sum_{j=0}^{\infty} a_j(i)b^j \mapsto \sum_{j=0}^{\infty} \sigma_b(a_j(i))b^{-j-1},$$

using permutations σ_b by Faure

 $\sigma_{2} = (0,1)$ $\sigma_{3} = (0,1,2)$ $\sigma_{4} = (0,2,1,3)$ $\sigma_{5} = (0,3,2,1,4)$ $\sigma_{6} = (0,2,4,1,3,5)$ $\sigma_{7} = (0,2,5,3,1,4,6)$ $\sigma_{8} = (0,4,2,6,1,5,3,7)$ \vdots

• Construction rule

- b is even: Take $2\sigma_{\underline{b}}$ and append $2\sigma_{\underline{b}} + 1$

- b is odd: Take σ_{b-1} , increment each value $\geq \frac{b-1}{2}$ and insert $\frac{b-1}{2}$ in the middle

Scrambled Halton Sequence and Hammersley Points

• Scrambled Halton sequence

$$x_i := \left(\Phi_{b_1}(i, \sigma_{b_1}), \dots, \Phi_{b_s}(i, \sigma_{b_s})\right)$$

• Scrambled Hammersley point set

$$x_i := \left(\frac{i}{N}, \Phi_{b_1}(i, \sigma_{b_1}), \dots, \Phi_{b_{s-1}}(i, \sigma_{b_{s-1}})\right)$$

Scrambled Halton Sequence and Hammersley Points

• Scrambled Halton sequence

$$x_i := \left(\Phi_{b_1}(i, \sigma_{b_1}), \dots, \Phi_{b_s}(i, \sigma_{b_s})\right)$$

• Scrambled Hammersley point set

$$x_i := \left(\frac{i}{N}, \Phi_{b_1}(i, \sigma_{b_1}), \dots, \Phi_{b_{s-1}}(i, \sigma_{b_{s-1}})\right)$$

• Improvement by scrambling (scrambled Halton sequence dimensions 7 and 8)

Elementary interval

$$E := \prod_{j=1}^{s} \left[\frac{a_j}{b^{l_j}}, \frac{a_j + 1}{b^{l_j}} \right] \subseteq I^s \text{ for integers } l_j \ge 0 \text{ and } 0 \le a_j < b^{l_j}$$

• Consequently its volume is

$$\lambda_s(E) = \prod_{j=1}^s \frac{1}{b^{l_j}} = \frac{1}{b^{\sum_{j=1}^s l_j}}$$

Elementary interval

$$E := \prod_{j=1}^{s} \left[\frac{a_j}{b^{l_j}}, \frac{a_j + 1}{b^{l_j}} \right] \subseteq I^s \text{ for integers } l_j \ge 0 \text{ and } 0 \le a_j < b^{l_j}$$

• Consequently its volume is

$$\lambda_s(E) = \prod_{j=1}^s \frac{1}{b^{l_j}} = \frac{1}{b^{\sum_{j=1}^s l_j}}$$

Definition: For two integers 0 ≤ t ≤ m, a finite point set of b^m points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume λ_s(E) = b^{t-m} contains exactly b^t points.

• Elementary interval

$$E := \prod_{j=1}^{s} \left[\frac{a_j}{b^{l_j}}, \frac{a_j + 1}{b^{l_j}} \right] \subseteq I^s \text{ for integers } l_j \ge 0 \text{ and } 0 \le a_j < b^{l_j}$$

• Consequently its volume is

$$\lambda_s(E) = \prod_{j=1}^s \frac{1}{b^{l_j}} = \frac{1}{b^{\sum_{j=1}^s l_j}}$$

- Definition: For two integers 0 ≤ t ≤ m, a finite point set of b^m points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume λ_s(E) = b^{t-m} contains exactly b^t points.
- For (t, m, s)-nets in base b we have

$$D^*(P_N) \le B(s,b)b^t rac{\log^{s-1} N}{N} + \mathcal{O}\left(b^t rac{\log^{s-2} N}{N}\right)$$

- t is the quality parameter

• Elementary interval

$$E := \prod_{j=1}^{s} \left[\frac{a_j}{b^{l_j}}, \frac{a_j + 1}{b^{l_j}} \right] \subseteq I^s \text{ for integers } l_j \ge 0 \text{ and } 0 \le a_j < b^{l_j}$$

• Consequently its volume is

$$\lambda_s(E) = \prod_{j=1}^s \frac{1}{b^{l_j}} = \frac{1}{b^{\sum_{j=1}^s l_j}}$$

- Definition: For two integers 0 ≤ t ≤ m, a finite point set of b^m points in s dimensions is called a (t, m, s)-net in base b, if every elementary interval of volume λ_s(E) = b^{t-m} contains exactly b^t points.
- For (t, m, s)-nets in base b we have

$$D^*(P_N) \le B(s,b)b^t rac{\log^{s-1} N}{N} + \mathcal{O}\left(b^t rac{\log^{s-2} N}{N}\right)$$

- -t is the quality parameter
- Note: So far the concept applies to random and deterministic points

Structure of (0, m, 2)-Nets in Base b = 2

- (t, m, s)-net in base b:
 - Set P_N of $N = b^m s$ -dimensional points of low discrepancy
 - Every elementary interval of volume b^{t-m} contains exactly b^t points

Structure of (0, m, 2)-Nets in Base b = 2

- (t, m, s)-net in base b:
 - Set P_N of $N = b^m s$ -dimensional points of low discrepancy
 - Every elementary interval of volume b^{t-m} contains exactly b^t points
- (0, m, 2)-net in base b = 2
 - Set P_N of $N = 2^m$ 2-dimensional points of low discrepancy
 - Every elementary interval of volume $2^{-m} = \frac{1}{N}$ contains exactly 1 point

Structure of (0, m, 2)-Nets in Base b = 2

- (t, m, s)-net in base b:
 - Set P_N of $N = b^m s$ -dimensional points of low discrepancy
 - Every elementary interval of volume b^{t-m} contains exactly b^t points
- (0, m, 2)-net in base b = 2
 - Set P_N of $N = 2^m$ 2-dimensional points of low discrepancy
 - Every elementary interval of volume $2^{-m} = \frac{1}{N}$ contains exactly 1 point
- Example: All elementary volumes of a (0, 3, 2)-net in base b = 2:

- more general than stratification and Latin hypercube sampling

Example of a (1, 3, 2)-Net in Base b = 2

• All elementary volumes of a (0, 3, 2)-net in base b = 2:

 \Rightarrow it cannot be a (0, 3, 2)-net !

Example of a (1, 3, 2)-Net in Base b = 2

• All elementary volumes of a (0, 3, 2)-net in base b = 2:

• All elementary volumes of a (1, 3, 2)-net in base b = 2:

 $\lambda_s(E) = b^{t-m} = 2^{1-3} = \frac{1}{4}$ with exactly $b^t = 2^1 = 2$ points \Rightarrow it is only a (1, 3, 2)-net...

Structure of (0, 2n, 2)-Nets in Base b = 2

- (t, m, s)-net in base b:
 - Set P_N of $N = b^m s$ -dimensional points of low discrepancy
 - Every elementary interval of volume b^{t-m} contains exactly b^t points

Structure of (0, 2n, 2)-Nets in Base b = 2

- (t, m, s)-net in base b:
 - Set P_N of $N = b^m s$ -dimensional points of low discrepancy
 - Every elementary interval of volume b^{t-m} contains exactly b^t points
- (0, 2n, 2)-net in base b = 2
 - Set P_N of $N = (2^n)^2$ 2-dimensional points of low discrepancy
 - Every elementary interval of volume $2^{-2n} = \frac{1}{N}$ contains exactly 1 point

Structure of (0, 2n, 2)-Nets in Base b = 2

- (t, m, s)-net in base b:
 - Set P_N of $N = b^m s$ -dimensional points of low discrepancy
 - Every elementary interval of volume b^{t-m} contains exactly b^t points
- (0, 2n, 2)-net in base b = 2
 - Set P_N of $N = (2^n)^2$ 2-dimensional points of low discrepancy
 - Every elementary interval of volume $2^{-2n} = \frac{1}{N}$ contains exactly 1 point

• (t, m, s)-nets: Much more general concept of stratification

Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base b, if for all k ≥ 0 and m ≥ t, the vectors x_{kb^m+1},..., x_{(k+1)b^m} ∈ I^s form a (t, m, s)-net.

- Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base b, if for all k ≥ 0 and m ≥ t, the vectors x_{kb^m+1},..., x_{(k+1)b^m} ∈ I^s form a (t, m, s)-net.
- For (t, s)-sequence in base b we have

$$D^*(P_N) \le C(s,b)b^t \frac{\log^s N}{N} + \mathcal{O}\left(b^t \frac{\log^{s-1} N}{N}\right)$$

- Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base b, if for all k ≥ 0 and m ≥ t, the vectors x_{kb^m+1},..., x_{(k+1)b^m} ∈ I^s form a (t, m, s)-net.
- For (t, s)-sequence in base b we have

$$D^*(P_N) \le C(s,b)b^t rac{\log^s N}{N} + \mathcal{O}\left(b^t rac{\log^{s-1} N}{N}\right)$$

- Adding the component $\frac{i}{N} = \frac{i}{b^m}$ to a (t, s)-sequence yields a (t, m, s + 1)-net
- (0, s)-sequences can only exist for $b \ge s$

- Definition: For t ≥ 0, an infinite point sequence is called a (t, s)-sequence in base b, if for all k ≥ 0 and m ≥ t, the vectors x_{kb^m+1},..., x_{(k+1)b^m} ∈ I^s form a (t, m, s)-net.
- For (t, s)-sequence in base b we have

$$D^*(P_N) \le C(s,b)b^t rac{\log^s N}{N} + \mathcal{O}\left(b^t rac{\log^{s-1} N}{N}\right)$$

- Adding the component $\frac{i}{N} = \frac{i}{b^m}$ to a (t, s)-sequence yields a (t, m, s + 1)-net
- (0, s)-sequences can only exist for $b \ge s$
- Examples
 - Van der Corput sequences are (0, 1)-sequences in base b
 - adding the component $\frac{i}{N}$ with $N = b^m$ yields a (0, m, 2)-net
 - * e.g. Hammersley point set for s = 2 and $N = 2^m$ points
 - * many applications in finance and particle transport problems

• Fixed-point numbers with M digits in base b

$$[0,1)_{b,M} := \left\{ kb^{-M} | k = 0, \dots, b^M - 1 \right\} \subset [0,1)$$

• Fixed-point numbers with M digits in base b

$$[0,1)_{b,M} := \left\{ kb^{-M} | k = 0, \dots, b^M - 1 \right\} \subset [0,1)$$

• Components $A_i^{(j)}$ of a point set $A = \{A_0, \dots, A_{N-1}\}$

$$A_i^{(j)} = \sum_{k=1}^M a_{i,k}^{(j)} \cdot b^{-k}$$

• Fixed-point numbers with M digits in base b

$$[0,1)_{b,M} := \left\{ kb^{-M} \mid k = 0, \dots, b^M - 1 \right\} \subset [0,1)$$

• Components $A_i^{(j)}$ of a point set $A = \{A_0, \dots, A_{N-1}\}$

$$A_i^{(j)} = \sum_{k=1}^M a_{i,k}^{(j)} \cdot b^{-k} =_b 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)} \in [0,1)_{b,M}$$

• Fixed-point numbers with M digits in base b

$$[0,1)_{b,M} := \left\{ kb^{-M} | k = 0, \dots, b^M - 1 \right\} \subset [0,1)$$

• Components $A_i^{(j)}$ of a point set $A = \{A_0, \dots, A_{N-1}\}$

$$A_{i}^{(j)} = \sum_{k=1}^{M} a_{i,k}^{(j)} \cdot b^{-k} =_{b} 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)} \in [0,1)_{b,M} \text{ where}$$

$$a_{i,k}^{(j)} := \eta_{k}^{(j)} \left(\sum_{l=0}^{M-1} c_{k,l}^{(j)} \cdot \psi_{l}(d_{i,l}) \right)$$

for $1 \leq j \leq s$ and

$$i := \sum_{l=0}^{M-1} d_{i,l} \cdot b^l \qquad d_{i,l} \in \mathbb{Z}_b := \{0, \dots, b-1\}$$

• Fixed-point numbers with M digits in base b

$$[0,1)_{b,M} := \left\{ kb^{-M} \mid k = 0, \dots, b^M - 1 \right\} \subset [0,1)$$

• Components $A_i^{(j)}$ of a point set $A = \{A_0, \dots, A_{N-1}\}$

$$\begin{aligned} A_{i}^{(j)} &= \sum_{k=1}^{M} a_{i,k}^{(j)} \cdot b^{-k} =_{b} 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)} \in [0,1)_{b,M} \text{ where} \\ a_{i,k}^{(j)} &:= \eta_{k}^{(j)} \left(\sum_{l=0}^{M-1} c_{k,l}^{(j)} \cdot \psi_{l}(d_{i,l}) \right) \end{aligned}$$

for $1 \leq j \leq s$ and

$$i := \sum_{l=0}^{M-1} d_{i,l} \cdot b^l \qquad d_{i,l} \in \mathbb{Z}_b := \{0, \dots, b-1\}$$

- Arithmetic in commutative ring $(R, +, \cdot)$ with |R| = b elements
- Bijections $\eta_k^{(j)}$: $R \to \mathbb{Z}_b$ and ψ_l : $\mathbb{Z}_b \to R$

• Fixed-point numbers with M digits in base b

$$[0,1)_{b,M} := \left\{ kb^{-M} | k = 0, \dots, b^M - 1 \right\} \subset [0,1)$$

• Components $A_i^{(j)}$ of a point set $A = \{A_0, \dots, A_{N-1}\}$

$$\begin{aligned} A_{i}^{(j)} &= \sum_{k=1}^{M} a_{i,k}^{(j)} \cdot b^{-k} =_{b} 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)} \in [0,1)_{b,M} \text{ where} \\ a_{i,k}^{(j)} &:= \eta_{k}^{(j)} \left(\sum_{l=0}^{M-1} c_{k,l}^{(j)} \cdot \psi_{l}(d_{i,l}) \right) \end{aligned}$$

for $1 \leq j \leq s$ and

$$i := \sum_{l=0}^{M-1} d_{i,l} \cdot b^l \qquad d_{i,l} \in \mathbb{Z}_b := \{0, \dots, b-1\}$$

- Arithmetic in commutative ring $(R, +, \cdot)$ with |R| = b elements
- Bijections $\eta_k^{(j)}$: $R \to \mathbb{Z}_b$ and ψ_l : $\mathbb{Z}_b \to R$

 \Rightarrow If now A is a (t, m, s)-net, it is called a **digital** (t, m, s)-net

 \Rightarrow If now A is a (t, s)-sequence, it is called a **digital** (t, s)-sequence

Deterministic Constructions of Digital Point Sets

• Generator matrix

$$C^{(j)} := \left(c_{k,l}^{(j)}\right)_{k=1,l=0}^{M,M-1} \in \mathbb{R}^{M \times M}$$

- van der Corput, Sobol', Faure, Niederreiter, and Niederreiter-Xing
 - increased quality by decreased parameter t
 - difficult computation of the generator matrices

Deterministic Constructions of Digital Point Sets

• Generator matrix

$$C^{(j)} := \left(c_{k,l}^{(j)}\right)_{k=1,l=0}^{M,M-1} \in \mathbb{R}^{M \times M}$$

- van der Corput, Sobol', Faure, Niederreiter, and Niederreiter-Xing
 - increased quality by decreased parameter t
 - difficult computation of the generator matrices
- Fast evaluation by
 - Gray codes
 - vectorization
 - buffering of invariants
 - rings implemented as lookup tables
- Very often

$$\vec{a}_i^{(j)} = C^{(j)} \vec{d}_i$$

Vectorization Example for Base b = 2

- Ring $R = (\{0, 1\}, +, \cdot) = \mathbb{Z}_2$ by bit vector operations
- One component at M bits precision

$$x_i = \left(\frac{1}{2} \cdots \frac{1}{2^M}\right) \cdot C \cdot \begin{pmatrix} d_0(i) \\ \vdots \\ d_{M-1}(i) \end{pmatrix} \quad \text{where } i = \sum_{k=0}^{m-1} d_k(i) 2^k$$

Vectorization Example for Base b = 2

- Ring $R = (\{0, 1\}, +, \cdot) = \mathbb{Z}_2$ by bit vector operations
- One component at M bits precision

$$x_i = \left(\frac{1}{2} \cdots \frac{1}{2^M}\right) \cdot C \cdot \begin{pmatrix} d_0(i) \\ \vdots \\ d_{M-1}(i) \end{pmatrix} \quad \text{where } i = \sum_{k=0}^{m-1} d_k(i) 2^k$$

• Basic vectorized algorithm

```
double x(int i)
{
  for(int y = 0, int k = 0; i; i /= 2, k++)
        if(i & 1)
        y ^= C[k];
```

```
return (double) y / (double) (1 << (M + 1));
```

Examples Matrices for Base b = 2

• (0, m, 1)-nets at $N = 2^m$

$$C_1 = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ & & \ddots & & \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

implements $x = \frac{i}{N}$

Examples Matrices for Base b = 2

• (0, 1)-sequences: Bit reversal, or $\phi_2(i)$ by van der Corput

 $C_2 = I$
• (0, 1)-sequences: Bit reversal, or $\phi_2(i)$ by van der Corput

 $C_2 = I$

• Algorithm

```
return (double) bits / (double) 0x10000000L;
```

• (0, 1)-sequences: Sobol' scrambled radical inverse

$$C_{3} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 \end{pmatrix} = \begin{pmatrix} k-1 \\ l-1 \end{pmatrix} \mod 2$$

• (0, 1)-sequences: Sobol' scrambled radical inverse

$$C_{3} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 \end{pmatrix} = \begin{pmatrix} k-1 \\ l-1 \end{pmatrix} \mod 2$$

• Algorithm

```
double SobolRadicalInverse(int i)
{
    int r, v;
    v = 1 << M;
    for(r = 0; i; i >>= 1)
    {
        if(i & 1)
            r ^= v;
        v ^= v >> 1;
    }
    return (double) r / (double) (1 << (M + 1));
}</pre>
```

• (0,1)-sequences: Larcher-Pillichshammer scrambled radical inverse

$$C_4 = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ & & \ddots & & \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

• (0, 1)-sequences: Larcher-Pillichshammer scrambled radical inverse

$$C_4 = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ & & \ddots & & \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

Algorithm

```
double LarcherPillichshammerRadicalInverse(int i)
{
    int r, v;
    v = 1 << M;
    for(r = 0; i; i >>= 1)
    {
        if(i & 1)
            r ^= v;
        v |= v >> 1;
    }
    return (double) r / (double) (1 << (M + 1));
}</pre>
```

Digital (0, m, s)-Nets and (0, s)-Sequences in Base b = 2

- (0, m, 2)-nets at $N = 2^m$
 - Hammersley points (worst constant)

 (C_1, C_2)

- Larcher-Pillichshammer points (best constant)

 (C_1, C_4)

Digital (0, m, s)-Nets and (0, s)-Sequences in Base b = 2

- (0, m, 2)-nets at $N = 2^m$
 - Hammersley points (worst constant)

 (C_1, C_2)

- Larcher-Pillichshammer points (best constant)

 (C_1, C_4)

• (0, 2)-sequence: Sobol' LP₀-sequence

 (C_2, C_3)

Digital (0, m, s)-Nets and (0, s)-Sequences in Base b = 2

- (0, m, 2)-nets at $N = 2^m$
 - Hammersley points (worst constant)

 (C_1, C_2)

- Larcher-Pillichshammer points (best constant)

 (C_1, C_4)

• (0, 2)-sequence: Sobol' LP₀-sequence

 (C_2, C_3)

• (0, m, 3)-net at $N = 2^m$: Sobol' LP₀-net

 (C_1, C_2, C_3)

• Very useful in particle transport, especially computer graphics

Software

• Numerical Recipes

- Sobol' sequence
- http://www.mcqmc.org/Software.html
 - Sobol' sequence
 - Faure sequence
 - Niederreiter sequence
- http://www.multires.caltech.edu/software/libseq/index.html
 - general package
 - several sequences (Halton, Niederreiter, ...)
- http://www.dismat.oeaw.ac.at/pirs/niedxing.html
 - generator matrices for the Niederreiter-Xing sequence

Good Lattice Points: Rank-1 Lattices

• **Definition:** A discrete subset

 $L := P_N + \mathbb{Z}^s \subset \mathbb{R}^s$

that is closed under addition and subtraction is called a lattice.

Good Lattice Points: Rank-1 Lattices

• **Definition:** A discrete subset

 $L := P_N + \mathbb{Z}^s \subset \mathbb{R}^s$

that is closed under addition and subtraction is called a lattice.

• Rank-1 lattice

$$\vec{x_i} := \frac{i}{N} \vec{g}$$

by suitable generating vector $\vec{g} \in \mathbb{N}^{s}$

- Low discrepancy constructions
 - Fibonacci lattices for s = 2
 - lattices with generator vector of Korobov-form $\vec{g} = (1, l, l^2, ...)$

Good Lattice Points: Rank-1 Lattices

• **Definition:** A discrete subset

 $L := P_N + \mathbb{Z}^s \subset \mathbb{R}^s$

that is closed under addition and subtraction is called a lattice.

• Rank-1 lattice

$$\vec{x_i} := \frac{i}{N} \vec{g}$$

by suitable generating vector $\vec{g} \in \mathbb{N}^s$

- Low discrepancy constructions
 - Fibonacci lattices for s = 2
 - lattices with generator vector of Korobov-form $\vec{g} = (1, l, l^2, ...)$
- No explicit construction only tables

• One-periodic pattern $L \cap [0, 1)^s$

- Low discrepancy
- Much better discrepancy than regular grids

Example: Fibonacci Rank-1 Lattice

- Fibonacci numbers: $F_1 = F_2 = 1$, $F_k = F_{k-1} + F_{k-2}$ for k > 2
- Fibonacci lattice by generator vector $\vec{g} = (1, F_{k-1})$ at $N = F_k$ points

$$\vec{x}_i := \frac{i}{F_k} (1, F_{k-1})$$

Low discrepancy

Example: Fibonacci Rank-1 Lattice

- Fibonacci numbers: $F_1 = F_2 = 1$, $F_k = F_{k-1} + F_{k-2}$ for k > 2
- Fibonacci lattice by generator vector $\vec{g} = (1, F_{k-1})$ at $N = F_k$ points

$$\vec{x}_i := \frac{i}{F_k} (1, F_{k-1})$$

- Low discrepancy

• Example: $N = F_{10} = 55$, $\vec{x}_i := \frac{i}{55}(1, 34)$

Example: Fibonacci Rank-1 Lattice

- Fibonacci numbers: $F_1 = F_2 = 1$, $F_k = F_{k-1} + F_{k-2}$ for k > 2
- Fibonacci lattice by generator vector $\vec{g} = (1, F_{k-1})$ at $N = F_k$ points

$$\vec{x}_i := \frac{i}{F_k} (1, F_{k-1})$$

- Low discrepancy

• Example: $N = F_{10} = 55$, $\vec{x}_i := \frac{i}{55}(1, 34)$

• Note: N grows exponentially for Fibonacci lattices

Lattice Sequences

• Rank-1 lattice

$$\vec{x}_i = \frac{i}{N} \cdot \vec{g}$$

• Hide N by choosing $N = b^m$ and

$$\vec{x}_i = \phi_b(i) \cdot \vec{g}$$

Lattice Sequences

• Rank-1 lattice

$$\vec{x}_i = \frac{i}{N} \cdot \vec{g}$$

• Hide N by choosing $N = b^m$ and

$$\vec{x}_i = \phi_b(i) \cdot \vec{g}$$

• Similar to (t,s)-sequences: $\vec{x}_{kb^m}, \ldots, \vec{x}_{(k+1)b^m-1}$ form a shifted lattice

Lattice Sequences

• Rank-1 lattice

$$\vec{x}_i = \frac{i}{N} \cdot \vec{g}$$

• Hide N by choosing $N = b^m$ and

$$\vec{x}_i = \phi_b(i) \cdot \vec{g}$$

• Similar to (t,s)-sequences: $\vec{x}_{kb^m}, \ldots, \vec{x}_{(k+1)b^m-1}$ form a shifted lattice

• Shift
$$\Delta$$
 in the $k + 1$ st run for $N = b^m$
 $\phi_b(i + kb^m) \cdot \vec{g} = \phi_b(i) + \phi_b(kb^m)$
 $= \phi_b(i) \cdot \vec{g} + \underbrace{\phi_b(k)b^{-m-1}\vec{g}}_{=:\Delta}$

Summary

- Quasi-Monte Carlo Points
 - low discrepancy
 - deterministic
 - intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)
 - * no extra programming

Summary

- Quasi-Monte Carlo Points
 - low discrepancy
 - deterministic
 - intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)
 - * no extra programming
 - no completely uniform distribution due to correlation

Beyond Monte Carlo

- Day 1: Monte Carlo
- Day 2: Quasi-Monte Carlo points
- Day 3: Quasi-Monte Carlo integration
- Day 4: Monte Carlo extensions of quasi-Monte Carlo
- Day 5: Applications to computer graphics

Day 3: Quasi-Monte Carlo Integration

- Koksma-Hlawka inequality and variation in the sense of Hardy and Krause
- Discrete density approximation
- Error control
- Transferring Monte Carlo techniques to quasi-Monte Carlo
- Integrands of infinite variation
- Discrete Fourier transform on good lattice points

Quasi-Monte Carlo Integration

• Numerical integration by **Quasi-Monte Carlo points**

$$\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < V(f)D^*(P_N)$$

with variation V(f) in the sense of Hardy and Krause and star-discrepancy

$$D^{*}(P_{N}) := \sup_{A = \prod_{j=1}^{s} [0, a_{j}) \subseteq I^{s}} \left| \underbrace{\int_{I^{s}} \chi_{A}(x) dx}_{=\lambda_{s}(A)} - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(x_{i}) \right|$$

Quasi-Monte Carlo Integration

• Numerical integration by **Quasi-Monte Carlo points**

$$\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < V(f)D^*(P_N)$$

with variation V(f) in the sense of Hardy and Krause and star-discrepancy

$$D^{*}(P_{N}) := \sup_{A = \prod_{j=1}^{s} [0, a_{j}) \subseteq I^{s}} \left| \underbrace{\int_{I^{s}} \chi_{A}(x) dx}_{=\lambda_{s}(A)} - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(x_{i}) \right|$$

- Deterministic error bound by the Koksma-Hlawka inequality
- Independent of dimension by using quasi-Monte Carlo points
 - roughly quadratically faster as compared to random sampling

Theorem: The Koksma-Hlawka Inequality

$$\left|\int_{I} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| \leq V(f)D^*(P_N)$$

• Proof for s = 1: Decompose

$$f(x) = f(1) - \int_x^1 f'(u) du = f(1) - \int_I \chi_{[0,u]}(x) f'(u) du$$

and define

$$V(f) := \int_{I} \left| \frac{\partial f(u)}{\partial u} \right| du$$

• Note:

$$\chi_{[0,u]}(x) = \begin{cases} 1 & x \in [0,u) \\ 0 & \text{else} \end{cases} = \begin{cases} 1 & x < u \\ 0 & \text{else} \end{cases}$$

Theorem: The Koksma-Hlawka Inequality

$$\left|\int_{I} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| \leq V(f)D^*(P_N)$$

• Proof for s = 1: Decompose

$$f(x) = f(1) - \int_x^1 f'(u) du = f(1) - \int_I \chi_{[0,u]}(x) f'(u) du$$

and define

$$V(f) := \int_{I} \left| \frac{\partial f(u)}{\partial u} \right| du$$

• Note:

$$\chi_{[0,u]}(x) = \begin{cases} 1 & x \in [0,u) \\ 0 & \text{else} \end{cases} = \begin{cases} 1 & x < u \\ 0 & \text{else} \end{cases} = \begin{cases} 1 & u > x \\ 0 & \text{else} \end{cases}$$

$$\left| \int_{I} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \right|$$

$$= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right|$$

$$\begin{split} &\int_{I} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \\ &= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right. \\ &= \left| f(1) - \int_{I} \int_{I} \chi_{[0,u]}(x) f'(u) du dx - f(1) + \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right| \end{split}$$

$$\begin{split} &\int_{I} f(x)dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \\ &= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right. \\ &= \left| f(1) - \int_{I} \int_{I} \chi_{[0,u]}(x) f'(u) du dx - f(1) + \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right| \\ &= \left| \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du - \int_{I} \int_{I} \chi_{[0,u]}(x) dx f'(u) du \right| \end{split}$$

$$\begin{split} &\int_{I} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \bigg| \\ &= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right) \\ &= \left| f(1) - \int_{I} \int_{I} \chi_{[0,u]}(x) f'(u) du dx - f(1) + \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right| \\ &= \left| \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du - \int_{I} \int_{I} \chi_{[0,u]}(x) dx f'(u) du \right| \\ &= \left| \int_{I} f'(u) \left[\frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right] du \right| \end{split}$$

$$\begin{split} &\int_{I} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \bigg| \\ &= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right) \\ &= \left| f(1) - \int_{I} \int_{I} \chi_{[0,u]}(x) f'(u) du dx - f(1) + \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right| \\ &= \left| \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du - \int_{I} \int_{I} \chi_{[0,u]}(x) dx f'(u) du \right| \\ &= \left| \int_{I} f'(u) \left[\frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right] du \right| \\ &\leq \int_{I} \left| f'(u) \right| \left| \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right| du \end{split}$$

$$\begin{split} &\int_{I} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \\ &= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right| \\ &= \left| f(1) - \int_{I} \int_{I} \chi_{[0,u]}(x) f'(u) du dx - f(1) + \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right| \\ &= \left| \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du - \int_{I} \int_{I} \chi_{[0,u]}(x) dx f'(u) du \right| \\ &= \left| \int_{I} f'(u) \left[\frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right] du \right| \\ &\leq \int_{I} \left| f'(u) \right| \left| \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right| du \\ &\leq \int_{I} \left| f'(u) \left| du \cdot \sup_{u \in I} \left| \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right| du \right| \end{split}$$

$$\begin{split} &\int_{I} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_{i}) \\ &= \left| \int_{I} f(1) - \int_{I} \chi_{[0,u]}(x) f'(u) du dx - \frac{1}{N} \sum_{i=0}^{N-1} \left(f(1) - \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right) \right| \\ &= \left| f(1) - \int_{I} \int_{I} \chi_{[0,u]}(x) f'(u) du dx - f(1) + \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du \right| \\ &= \left| \frac{1}{N} \sum_{i=0}^{N-1} \int_{I} \chi_{[0,u]}(x_{i}) f'(u) du - \int_{I} \int_{I} \chi_{[0,u]}(x) dx f'(u) du \right| \\ &= \left| \int_{I} f'(u) \left[\frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right] du \right| \\ &\leq \int_{I} \left| f'(u) \right| \left| \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right| du \\ &\leq \int_{I} \left| f'(u) \right| du \cdot \sup_{u \in I} \left| \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[0,u]}(x_{i}) - \int_{I} \chi_{[0,u]}(x) dx \right| \\ &= V(f) D^{*}(P_{N}) \quad q.e.d. \end{split}$$

Variation in the Sense of Vitali

• Difference operator for intervals of the form $A = \prod_{i=1}^{s} [a_i, b_i) \subseteq I^s$

$$\Delta(f,A) := \sum_{j_1=0}^{1} \cdots \sum_{j_s=0}^{1} (-1)^{\sum_{k=1}^{s} j_k} f(j_1 a_1 + (1-j_1)b_1, \dots, j_s a_s + (1-j_s)b_s)$$

Variation in the Sense of Vitali

• Difference operator for intervals of the form $A = \prod_{i=1}^{s} [a_i, b_i) \subseteq I^s$

$$\Delta(f,A) := \sum_{j_1=0}^{1} \cdots \sum_{j_s=0}^{1} (-1)^{\sum_{k=1}^{s} j_k} f(j_1 a_1 + (1-j_1)b_1, \dots, j_s a_s + (1-j_s)b_s)$$

• Variation in the sense of Vitali

$$V^{(s)}(f) := \sup_{\mathcal{P}} \sum_{A \in \mathcal{P}} |\Delta(f, A)|$$

where \mathcal{P} is the set of partitions of I^s into subintervals A as above
Variation in the Sense of Vitali

• Difference operator for intervals of the form $A = \prod_{i=1}^{s} [a_i, b_i) \subseteq I^s$

$$\Delta(f,A) := \sum_{j_1=0}^{1} \cdots \sum_{j_s=0}^{1} (-1)^{\sum_{k=1}^{s} j_k} f(j_1 a_1 + (1-j_1)b_1, \dots, j_s a_s + (1-j_s)b_s)$$

• Variation in the sense of Vitali

$$V^{(s)}(f) := \sup_{\mathcal{P}} \sum_{A \in \mathcal{P}} |\Delta(f, A)|$$

where \mathcal{P} is the set of partitions of I^s into subintervals A as above

• If *f* has a continuous derivative

$$V^{(s)}(f) = \int_{I^s} \left| \frac{\partial^s f(u_1, \dots, u_s)}{\partial u_1 \cdots \partial u_s} \right| du$$

Variation in the Sense of Vitali

• Difference operator for intervals of the form $A = \prod_{i=1}^{s} [a_i, b_i) \subseteq I^s$

$$\Delta(f,A) := \sum_{j_1=0}^{1} \cdots \sum_{j_s=0}^{1} (-1)^{\sum_{k=1}^{s} j_k} f(j_1 a_1 + (1-j_1)b_1, \dots, j_s a_s + (1-j_s)b_s)$$

• Variation in the sense of Vitali

$$V^{(s)}(f) := \sup_{\mathcal{P}} \sum_{A \in \mathcal{P}} |\Delta(f, A)|$$

where \mathcal{P} is the set of partitions of I^s into subintervals A as above

• If *f* has a continuous derivative

$$V^{(s)}(f) = \int_{I^s} \left| \frac{\partial^s f(u_1, \dots, u_s)}{\partial u_1 \cdots \partial u_s} \right| du$$

• Problem if f constant in only some of the variables u_1, \ldots, u_s

$$\Rightarrow \Delta(f, A) = 0 \qquad \Rightarrow V^{(s)}(f) = 0$$

• Restrict variation in the sense of Vitali

 $V^{(k)}(f;i_1,\ldots,i_k)$

to the k-dimensional face $\{(u_1, \ldots, u_s) \in [0, 1]^s | u_j = 1 \text{ for } j \neq i_1, \ldots, i_k\}$

• Restrict variation in the sense of Vitali

 $V^{(k)}(f; i_1, \ldots, i_k)$

to the k-dimensional face $\{(u_1, \ldots, u_s) \in [0, 1]^s | u_j = 1 \text{ for } j \neq i_1, \ldots, i_k\}$

• Variation in the sense of Hardy and Krause

$$V(f) := \sum_{k=1}^{s} \sum_{1 \le i_1 < \dots < i_k \le s} V^{(k)}(f; i_1, \dots, i_k)$$

• Restrict variation in the sense of Vitali

 $V^{(k)}(f; i_1, \ldots, i_k)$

to the k-dimensional face $\{(u_1, \ldots, u_s) \in [0, 1]^s | u_j = 1 \text{ for } j \neq i_1, \ldots, i_k\}$

• Variation in the sense of Hardy and Krause

$$V(f) := \sum_{k=1}^{s} \sum_{1 \le i_1 < \dots < i_k \le s} V^{(k)}(f; i_1, \dots, i_k)$$

• Definition:

f is of bounded variation in the sense of Hardy and Krause, if V(f) is finite.

• Restrict variation in the sense of Vitali

 $V^{(k)}(f; i_1, \ldots, i_k)$

to the k-dimensional face $\{(u_1, \ldots, u_s) \in [0, 1]^s | u_j = 1 \text{ for } j \neq i_1, \ldots, i_k\}$

• Variation in the sense of Hardy and Krause

$$V(f) := \sum_{k=1}^{s} \sum_{1 \le i_1 < \dots < i_k \le s} V^{(k)}(f; i_1, \dots, i_k)$$

• Definition:

f is of bounded variation in the sense of Hardy and Krause, if V(f) is finite.

- Estimating the variation in the sense of Hardy and Krause
 - use regular grid at $N = n^s$ samples
 - compute difference operator Δ on the grid
 - sum up the approximations of the single Vitali variations

$$-n \rightarrow \infty$$

Variation Reduction

- Transfer Monte Carlo variance reduction techniques to quasi-Monte Carlo
 - separation of the main part
 - multilevel method of dependent tests
 - importance sampling
 - replication heuristics (presmoothing the integrand)

Variation Reduction

- Transfer Monte Carlo variance reduction techniques to quasi-Monte Carlo
 - separation of the main part
 - multilevel method of dependent tests
 - importance sampling
 - replication heuristics (presmoothing the integrand)
- Quasi-Monte Carlo importance sampling

$$\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} \frac{f(y_i)}{p(y_i)}\right| \le V\left(\frac{f}{p}\right) D^*(P_N)$$

where $y_i \sim p$ by the multidimensional inversion method

- Similar to the Monte Carlo case, the variation is not changed
- For low discrepancy points P_N quadratically faster than random sampling

Approximating Continuous by Discrete Measures

- Often integrands of the form f = gp
 - p can be modeled using the multidimensional inversion method
 - -g is hard to handle (e.g. discontinuous, expensive)

Approximating Continuous by Discrete Measures

- Often integrands of the form f = gp
 - p can be modeled using the multidimensional inversion method
 - -g is hard to handle (e.g. discontinuous, expensive)
- Avoid weighting by small probabilities

$$\int_{I^s} f(x)dx = \int_{I^s} g(x)p(x)dx = \int_{I^s} g(y)dP(y)$$

• Approximate measure *P* by discrete measure

$$P_N := \frac{1}{N} \sum_{i=0}^{N-1} \delta_{y_i}$$

modeled by $y_i = P^{-1}(x_i)$ from $x_i \sim \mathcal{U}_i$

• Then

$$\int_{I^s} g(y) dP(y) \approx \int_{I^s} g(y) dP_N(y) := \frac{1}{N} \sum_{i=0}^{N-1} g(y_i)$$

• Definition: The discrepancy with respect to the density p is

$$D^{*}(p, C_{N}) := \sup_{A \in \mathcal{J}^{*}} \left| \int_{I^{s}} \chi_{A}(x) p(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(y_{i}) \right|$$

here $C_{N} = \{y_{0}, \dots, y_{N-1}\}$

W

• Definition: The discrepancy with respect to the density p is

$$D^{*}(p, C_{N}) := \sup_{A \in \mathcal{J}^{*}} \left| \int_{I^{s}} \chi_{A}(x) p(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(y_{i}) \right|$$

where $C_{N} = \{y_{0}, \dots, y_{N-1}\}$

• Multidimensional inversion method: If p is separable, i.e. $p(x) = \prod_{j=1}^{s} p^{(j)}(x^{(j)})$

 $D^*(p, C_N) = D^*(P_N)$

otherwise

 $D^*(p, C_N) \le c \left(D^*(P_N)\right)^{\frac{1}{s}} \qquad c \in \mathbb{R}^+$

• Definition: The discrepancy with respect to the density p is

$$D^{*}(p, C_{N}) := \sup_{A \in \mathcal{J}^{*}} \left| \int_{I^{s}} \chi_{A}(x) p(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(y_{i}) \right|$$

where $C_{N} = \{y_{0}, \dots, y_{N-1}\}$

• Multidimensional inversion method: If p is separable, i.e. $p(x) = \prod_{j=1}^{s} p^{(j)}(x^{(j)})$

 $D^*(p,C_N) = D^*(P_N)$

otherwise

$$D^*(p, C_N) \le c \left(D^*(P_N) \right)^{\frac{1}{s}} \qquad c \in \mathbb{R}^+$$

Discrete density approximation by elements of low discrepancy outperforms random sampling !!!

• Definition: The discrepancy with respect to the density p is

$$D^{*}(p, C_{N}) := \sup_{A \in \mathcal{J}^{*}} \left| \int_{I^{s}} \chi_{A}(x) p(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(y_{i}) \right|$$

where $C_{N} = \{y_{0}, \dots, y_{N-1}\}$

• Multidimensional inversion method: If p is separable, i.e. $p(x) = \prod_{j=1}^{s} p^{(j)}(x^{(j)})$

 $D^*(p,C_N) = D^*(P_N)$

otherwise

$$D^*(p, C_N) \le c \left(D^*(P_N) \right)^{\frac{1}{s}} \qquad c \in \mathbb{R}^+$$

Discrete density approximation by elements of low discrepancy outperforms random sampling !!!

• Generalized Koksma-Hlawka inequality

$$\left|\int_{I^s} g(x)p(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} g(y_i)\right| \le V(g)D^*(p,C_N)$$

Discrete Density Approximation

• Example: Particle emission (jittered sampling and Hammersley points at N = 16)

Discrete Density Approximation

• Example: Particle emission (jittered sampling and Hammersley points at N = 16)

• Note: Assigning dimensions is crucial

Discrete Density Approximation

Infinite Variation

- Quasi-Monte Carlo is roughly quadratically faster than random sampling
- Case s = 1: $V(f) < \infty$ for piecewise continuous functions
- General case: Usually infinite variation for piecewise continuous functions

Infinite Variation

- Quasi-Monte Carlo is roughly quadratically faster than random sampling
- Case s = 1: $V(f) < \infty$ for piecewise continuous functions
- General case: Usually infinite variation for piecewise continuous functions
- In computer graphics: Triangles and edges

$$V(f) = \infty \qquad \sigma^2(f) = \frac{1}{4}$$

Infinite Variation

- Quasi-Monte Carlo is roughly quadratically faster than random sampling
- Case s = 1: $V(f) < \infty$ for piecewise continuous functions
- General case: Usually infinite variation for piecewise continuous functions
- In computer graphics: Triangles and edges

$$V(f) = \infty$$
 $\sigma^2(f) = \frac{1}{4}$

• Proof for the Hammersley points at $N = 2^{l}$

$$\left| \int_{I^2} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} f(x_i) \right| = \begin{cases} \frac{1}{2\sqrt{N}} & l \text{ even} \\ \frac{1}{\sqrt{2N}} & \text{else} \end{cases}$$

Far Too Pessimistic Bounds by Isotropic Discrepancy

• Restrict f to convex domains C, where $f|_C$ is of bounded variation

$$\left| \int_{C} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{C}(x_{i}) f(x_{i}) \right| \leq (V(f) + |f(1, \dots, 1)|) J(P_{N})$$

$$\leq (V(f) + |f(1, \dots, 1)|) 8sD^{*}(P_{N})^{\frac{1}{s}}$$

• Bound worse than the Monte Carlo rate for s > 2

Far Too Pessimistic Bounds by Isotropic Discrepancy

• Restrict f to convex domains C, where $f|_C$ is of bounded variation

$$\left| \int_{C} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{C}(x_{i}) f(x_{i}) \right| \leq (V(f) + |f(1, \dots, 1)|) J(P_{N})$$

$$\leq (V(f) + |f(1, \dots, 1)|) 8sD^{*}(P_{N})^{\frac{1}{s}}$$

- Bound worse than the Monte Carlo rate for s > 2
- Numerical experiments tell a different story...
 - see e.g. the experiments on the triangle discrepancy
- Justification by discrete density approximation
 - using low discrepancy sequences always is better

Far Too Pessimistic Bounds by Isotropic Discrepancy

• Restrict f to convex domains C, where $f|_C$ is of bounded variation

$$\left| \int_{C} f(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_{C}(x_{i}) f(x_{i}) \right| \leq (V(f) + |f(1, \dots, 1)|) J(P_{N})$$

$$\leq (V(f) + |f(1, \dots, 1)|) 8sD^{*}(P_{N})^{\frac{1}{s}}$$

- Bound worse than the Monte Carlo rate for s > 2
- Numerical experiments tell a different story...
 - see e.g. the experiments on the triangle discrepancy
- Justification by discrete density approximation
 - using low discrepancy sequences always is better
- Which function class other than bounded variation ?

• Quasi-Monte Carlo integration converges for Riemann-integrable functions

- Quasi-Monte Carlo integration converges for Riemann-integrable functions
- Observed rate for discontinuous functions $\mathcal{O}\left(N^{-\frac{s+1}{2s}}\right)$

- Quasi-Monte Carlo integration converges for Riemann-integrable functions
- Observed rate for discontinuous functions $\mathcal{O}\left(N^{-\frac{s+1}{2s}}\right)$
- Argument in "Numerical Recipes"
 - Weak assumption:

The behavior of low discrepancy samples at the border of characteristic sets is uncorrelated.

- in fact true for jittered sampling [Mitchell]
- generalized by Szirmay-Kalos

- Quasi-Monte Carlo integration converges for Riemann-integrable functions
- Observed rate for discontinuous functions $\mathcal{O}\left(N^{-\frac{s+1}{2s}}\right)$
- Argument in "Numerical Recipes"
 - Weak assumption:

The behavior of low discrepancy samples at the border of characteristic sets is uncorrelated.

- in fact true for jittered sampling [Mitchell]
- generalized by Szirmay-Kalos
- Argument by [MC95]
 - Weak assumption:

Rate of random sampling used as upper bound for low discrepancy sampling, i.e. it is assumed, that low discrepancy sampling deterministically (!) does not behave worse than random sampling.

– there exist proofs for some special cases for s = 2

Proposition: Using stratified sampling to integrate the characteristic function χ_A for some subset $A \subset I^s$, $\lambda_s(A) > 0$, for $N = \prod_{j=1}^s N_j$ and the axial subdivision into

 N_j equally spaced intervals, results in the convergence rate of $O\left(N^{-\frac{s+1}{2s}}\right)$.

Proposition: Using stratified sampling to integrate the characteristic function χ_A for some subset $A \subset I^s$, $\lambda_s(A) > 0$, for $N = \prod_{j=1}^s N_j$ and the axial subdivision into N_j equally spaced intervals, results in the convergence rate of $\mathcal{O}\left(N^{-\frac{s+1}{2s}}\right)$.

Proof:

- I^s partitioned into $N = \prod_{j=1}^s N_j$ voxels v_i , $\lambda_s(v_i) = \frac{1}{N}$, $1 \le i \le N$
- Jittered sampling for

$$\int_{I^s} \chi_A(x) dx \approx \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i|_{v_i})$$

Proposition: Using stratified sampling to integrate the characteristic function χ_A for some subset $A \subset I^s$, $\lambda_s(A) > 0$, for $N = \prod_{j=1}^s N_j$ and the axial subdivision into N_j equally spaced intervals, results in the convergence rate of $\mathcal{O}\left(N^{-\frac{s+1}{2s}}\right)$.

Proof:

- I^s partitioned into $N = \prod_{j=1}^s N_j$ voxels v_i , $\lambda_s(v_i) = \frac{1}{N}$, $1 \le i \le N$
- Jittered sampling for

$$\int_{I^s} \chi_A(x) dx \approx \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i|_{v_i})$$

- Three sets of voxel indices

$$V_i = \{v_i | v_i \cap A = v_i\}$$
$$V_b = \{v_i | \emptyset \neq v_i \cap A \neq v_i\}$$
$$V_o = \{v_i | v_i \cap A = \emptyset\}$$

Proposition: Using stratified sampling to integrate the characteristic function χ_A for some subset $A \subset I^s$, $\lambda_s(A) > 0$, for $N = \prod_{j=1}^s N_j$ and the axial subdivision into N_j equally spaced intervals, results in the convergence rate of $\mathcal{O}\left(N^{-\frac{s+1}{2s}}\right)$.

Proof:

- I^s partitioned into $N = \prod_{j=1}^s N_j$ voxels v_i , $\lambda_s(v_i) = \frac{1}{N}$, $1 \le i \le N$
- Jittered sampling for

$$\int_{I^s} \chi_A(x) dx \approx \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i|_{v_i})$$

- Three sets of voxel indices

 $V_i = \{v_i | v_i \cap A = v_i\}$ $V_b = \{v_i | \emptyset \neq v_i \cap A \neq v_i\}$ $V_o = \{v_i | v_i \cap A = \emptyset\}$

- Assumption: $|V_i| \in \mathcal{O}(N)$

- Assumption: Dimension of the boundary $s - 1 \Rightarrow |V_b| \in \mathcal{O}\left(N^{\frac{s-1}{s}}\right)$

$$p_i = \frac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \le \frac{1}{4}$

$$p_i = rac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \leq rac{1}{4}$

- Then

$$\sigma^2\left(\frac{1}{N}\sum_{i=0}^{N-1}\chi_A(x_i|v_i)\right) = \sigma^2\left(\frac{1}{N}\sum_{i=0}^{N-1}\chi_{A\cap v_i}(x_i)\right)$$

$$p_i = rac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \leq rac{1}{4}$

- Then

$$\sigma^{2} \left(\frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(x_{i}|v_{i}) \right) = \sigma^{2} \left(\frac{1}{N} \sum_{i=0}^{N-1} \chi_{A\cap v_{i}}(x_{i}) \right)$$
$$= \sigma^{2} \left(\frac{1}{N} \sum_{i\in V_{i}} \chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N} \sum_{i\in V_{b}} \chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N} \sum_{i\in V_{o}} \chi_{A\cap v_{i}}(x_{i}) \right)$$

$$p_i = rac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \leq rac{1}{4}$

$$\sigma^{2} \left(\frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(x_{i}|v_{i}) \right) = \sigma^{2} \left(\frac{1}{N} \sum_{i=0}^{N-1} \chi_{A\cap v_{i}}(x_{i}) \right)$$
$$= \sigma^{2} \left(\frac{1}{N} \sum_{i \in V_{i}} \chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N} \sum_{i \in V_{b}} \chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N} \sum_{i \in V_{o}} \chi_{A\cap v_{i}}(x_{i}) \right)$$
$$= \sigma^{2} \left(\frac{1}{N} |V_{i}| + \frac{1}{N} \sum_{i \in V_{b}} \chi_{A\cap v_{i}}(x_{i}) + 0 \right)$$

$$p_i = rac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \leq rac{1}{4}$

_

Then

$$\sigma^{2}\left(\frac{1}{N}\sum_{i=0}^{N-1}\chi_{A}(x_{i}|v_{i})\right) = \sigma^{2}\left(\frac{1}{N}\sum_{i=0}^{N-1}\chi_{A\cap v_{i}}(x_{i})\right)$$

$$= \sigma^{2}\left(\frac{1}{N}\sum_{i\in V_{i}}\chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N}\sum_{i\in V_{b}}\chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N}\sum_{i\in V_{o}}\chi_{A\cap v_{i}}(x_{i})\right)$$

$$= \sigma^{2}\left(\frac{1}{N}|V_{i}| + \frac{1}{N}\sum_{i\in V_{b}}\chi_{A\cap v_{i}}(x_{i}) + 0\right)$$

$$= \sigma^{2}\left(\frac{1}{N}\sum_{i\in V_{b}}\chi_{A\cap v_{i}}(x_{i})\right)$$
- Random sample $x_i \in v_i \in V_b$ is Bernoulli random variable with

$$p_i = rac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \leq rac{1}{4}$

Then

$$\sigma^{2}\left(\frac{1}{N}\sum_{i=0}^{N-1}\chi_{A}(x_{i}|v_{i})\right) = \sigma^{2}\left(\frac{1}{N}\sum_{i=0}^{N-1}\chi_{A\cap v_{i}}(x_{i})\right)$$

$$= \sigma^{2}\left(\frac{1}{N}\sum_{i\in V_{i}}\chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N}\sum_{i\in V_{b}}\chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N}\sum_{i\in V_{o}}\chi_{A\cap v_{i}}(x_{i})\right)$$

$$= \sigma^{2}\left(\frac{1}{N}|V_{i}| + \frac{1}{N}\sum_{i\in V_{b}}\chi_{A\cap v_{i}}(x_{i}) + 0\right)$$

$$= \sigma^{2}\left(\frac{1}{N}\sum_{i\in V_{b}}\chi_{A\cap v_{i}}(x_{i})\right) = \sum_{i\in V_{b}}\frac{\sigma^{2}(\chi_{A\cap v_{i}}(x_{i}))}{N^{2}}$$

- Random sample $x_i \in v_i \in V_b$ is Bernoulli random variable with

$$p_i = rac{\lambda_s(A \cap v_i)}{\lambda_s(v_i)}$$
 and $\sigma^2(\chi_{A \cap v_i}) \leq rac{1}{4}$

Th

$$\sigma^{2} \left(\frac{1}{N} \sum_{i=0}^{N-1} \chi_{A}(x_{i}|v_{i}) \right) = \sigma^{2} \left(\frac{1}{N} \sum_{i=0}^{N-1} \chi_{A\cap v_{i}}(x_{i}) \right)$$

$$= \sigma^{2} \left(\frac{1}{N} \sum_{i \in V_{i}} \chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N} \sum_{i \in V_{b}} \chi_{A\cap v_{i}}(x_{i}) + \frac{1}{N} \sum_{i \in V_{o}} \chi_{A\cap v_{i}}(x_{i}) \right)$$

$$= \sigma^{2} \left(\frac{1}{N} |V_{i}| + \frac{1}{N} \sum_{i \in V_{b}} \chi_{A\cap v_{i}}(x_{i}) + 0 \right)$$

$$= \sigma^{2} \left(\frac{1}{N} \sum_{i \in V_{b}} \chi_{A\cap v_{i}}(x_{i}) \right) = \sum_{i \in V_{b}} \frac{\sigma^{2} (\chi_{A\cap v_{i}}(x_{i}))}{N^{2}}$$

$$\leq |V_{b}| \frac{1}{N^{2}} = cN^{\frac{s-1}{s}} N^{-2} = cN^{-\frac{s+1}{s}}$$

- By the Hölder inequality the error is expected to be

$$\left| \int_{I^s} \chi_A(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i) \right| \le \sqrt{cN^{-\frac{s+1}{s}}} \in \mathcal{O}(N^{-\frac{s+1}{2s}}) \qquad q.e.d.$$

- By the Hölder inequality the error is expected to be

$$\left| \int_{I^s} \chi_A(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} \chi_A(x_i) \right| \le \sqrt{cN^{-\frac{s+1}{s}}} \in \mathcal{O}(N^{-\frac{s+1}{2s}}) \qquad q.e.d.$$

• Note:

$$\lim_{s \to \infty} N^{-\frac{s+1}{2s}} = N^{-\frac{1}{2}}$$

- Determinism: Variance of estimate is zero !
 - no cheap error estimate from samples
 - no efficiency complex analysis by information based complexity theory
 - quasi-Monte Carlo integration is "biased" but "consistent"

- Determinism: Variance of estimate is zero !
 - no cheap error estimate from samples
 - no efficiency complex analysis by information based complexity theory
 - quasi-Monte Carlo integration is "biased" but "consistent"
- Adaptive sampling by using low discrepancy sequences
 - convergence is rather smooth due to intrinsic stratification properties
 - choose fixed distance ΔN of samples
 - compare difference of averages all ΔN to a threshold
 - must be below the threshold \boldsymbol{T} times

- Determinism: Variance of estimate is zero !
 - no cheap error estimate from samples
 - no efficiency complex analysis by information based complexity theory
 - quasi-Monte Carlo integration is "biased" but "consistent"
- Adaptive sampling by using low discrepancy sequences
 - convergence is rather smooth due to intrinsic stratification properties
 - choose fixed distance ΔN of samples
 - compare difference of averages all ΔN to a threshold
 - must be below the threshold \boldsymbol{T} times
- The points "know" where to fall

- Determinism: Variance of estimate is zero !
 - no cheap error estimate from samples
 - no efficiency complex analysis by information based complexity theory
 - quasi-Monte Carlo integration is "biased" but "consistent"
- Adaptive sampling by using low discrepancy sequences
 - convergence is rather smooth due to intrinsic stratification properties
 - choose fixed distance ΔN of samples
 - compare difference of averages all ΔN to a threshold
 - must be below the threshold \boldsymbol{T} times
- The points "know" where to fall
- Consider local minima for ΔN !
 - e.g. (t, s)-sequences at $\Delta N = b^m$
 - e.g. Hammersley in s = 2

- The basic algorithms transfer
 - integration
 - integro-approximation
 - Separation of main part and multilevel method of dependent tests

- The basic algorithms transfer
 - integration
 - integro-approximation
 - Separation of main part and multilevel method of dependent tests
- Faster convergence by deterministic low discrepancy sampling
 - intrinsically stratified, Latin hypercube, regularized, antithetic, ...

- The basic algorithms transfer
 - integration
 - integro-approximation
 - Separation of main part and multilevel method of dependent tests
- Faster convergence by deterministic low discrepancy sampling
 - intrinsically stratified, Latin hypercube, regularized, antithetic, ...
- The simulation of random variables becomes discrete density approximation
 - no independence required due to averaging
 - importance sampling carries over
 - rejection modeling impossible

- The basic algorithms transfer
 - integration
 - integro-approximation
 - Separation of main part and multilevel method of dependent tests
- Faster convergence by deterministic low discrepancy sampling
 - intrinsically stratified, Latin hypercube, regularized, antithetic, ...
- The simulation of random variables becomes discrete density approximation
 - no independence required due to averaging
 - importance sampling carries over
 - rejection modeling impossible
- Adaptive sampling by difference comparison
- What about splitting ?

• Write down the integral

- Write down the integral
- Transform onto unit cube I^s

- Write down the integral
- Transform onto unit cube I^s
- Separate the main part

- Write down the integral
- Transform onto unit cube I^s
- Separate the main part
- Apply (multiple) importance sampling

- Write down the integral
- Transform onto unit cube I^s
- Separate the main part
- Apply (multiple) importance sampling
- Use quasi-Monte Carlo points
 - sample size N
 - assigning dimensions

- Write down the integral
- Transform onto unit cube I^s
- Separate the main part
- Apply (multiple) importance sampling
- Use quasi-Monte Carlo points
 - sample size N
 - assigning dimensions
- Use dependent splitting

Quasi-Monte Carlo Integration using Lattice Points

• Originally developed for the class $E_{\alpha}(c)$ with $c > 0, \alpha > 1$, where

$$f \in E_{\alpha}(c) \Leftrightarrow |\widehat{f}(h)| \leq \frac{c}{(\overline{h}_{1} \cdots \overline{h}_{s})^{\alpha}} \qquad \overline{h}_{j} := \max\{1, |h_{j}|\}, \vec{h} \in \mathbb{Z}^{s}$$

• Error bound

$$\left|\frac{1}{N}\sum_{i=0}^{N-1} f\left(\frac{i}{N}\vec{g}\right) - \int_{I^s} f(x)dx\right| \leq \sum_{\vec{h}\cdot\vec{g}\equiv 0 \pmod{N}, \vec{h}\neq 0} \frac{1}{(\bar{h}_1\cdots\bar{h}_s)^{\alpha}}$$

Quasi-Monte Carlo Integration using Lattice Points

• Originally developed for the class $E_{\alpha}(c)$ with $c > 0, \alpha > 1$, where

$$f \in E_{\alpha}(c) \Leftrightarrow |\widehat{f}(h)| \leq \frac{c}{(\overline{h}_{1} \cdots \overline{h}_{s})^{\alpha}} \qquad \overline{h}_{j} := \max\{1, |h_{j}|\}, \vec{h} \in \mathbb{Z}^{s}$$

• Error bound

$$\frac{1}{N}\sum_{i=0}^{N-1} f\left(\frac{i}{N}\vec{g}\right) - \int_{I^s} f(x)dx \leq \sum_{\vec{h}\cdot\vec{g}\equiv 0 \pmod{N}, \vec{h}\neq 0} \frac{1}{(\bar{h}_1\cdots\bar{h}_s)^{\alpha}}$$

• Generalized to class of bounded variation

Curse of Dimension from Regular Grids

• Lattices of rank s with $N = n^s$ points from tensor product approach

0, 7	● 1, 7	● ^{2, 7}	3 , 7	● ^{4, 7}	● 5, 7	● 6, 7	● 7, 7
0, 6	1 , 6	• ^{2, 6}	3 , 6	● ^{4, 6}	• 5, 6	6 , 6	● 7, 6
0, 5	● 1, 5	• ^{2, 5}	3 , 5	• ^{4, 5}	● 5, 5	6 , 5	● 7, 5
0, 4	• ^{1, 4}	2 , 4	• ^{3, 4}	• ^{4, 4}	• 5, 4	6 , 4	• ^{7, 4}
0, 3	● ^{1, 3}	• ^{2, 3}	3 , 3	• ^{4, 3}	• 5, 3	6 , 3	• 7, 3
0, 2	● 1, 2	2 , 2	3 , 2	● ^{4, 2}	5 , 2	6 , 2	● 7, 2
0, 1	1 , 1	_ 2, 1	3 , 1	4 , 1	5 , 1	6 , 1	7 , 1
0, 0	1, 0	2, 0	3, 0	4, 0	5, 0	6, 0	7, 0

• $\mathcal{O}(n^s \log n)$ for s fast Fourier transforms

• Choice of wave vectors

$$K_N := \{\vec{k}_0, \dots, \vec{k}_{N-1}\} \subset \mathbb{Z}^s$$

such that

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

• Choice of wave vectors

$$K_N := \{\vec{k}_0, \dots, \vec{k}_{N-1}\} \subset \mathbb{Z}^s$$

such that

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

since then

$$\vec{k}_m^T \cdot \vec{x}_n = \vec{k}_m^T \cdot \frac{n}{N} \vec{g} = (m + l_m N) \frac{n}{N}$$

• Choice of wave vectors

$$K_N := \{\vec{k}_0, \dots, \vec{k}_{N-1}\} \subset \mathbb{Z}^s$$

such that

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

since then

$$\vec{k}_m^T \cdot \vec{x}_n = \vec{k}_m^T \cdot \frac{n}{N} \vec{g} = (m + l_m N) \frac{n}{N}$$

• Evaluate

$$\vec{f}(\vec{x}_n) = \sum_{\vec{k} \in K_N} \vec{f}(\vec{k}) e^{2\pi i \vec{k}^T \cdot \vec{x}_n} = \sum_{m=0}^{N-1} \vec{f}(\vec{k}_m) e^{2\pi i \vec{k}_m^T \cdot \vec{x}_n}$$

• Choice of wave vectors

$$K_N := \{\vec{k}_0, \dots, \vec{k}_{N-1}\} \subset \mathbb{Z}^s$$

such that

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

since then

$$\vec{k}_m^T \cdot \vec{x}_n = \vec{k}_m^T \cdot \frac{n}{N} \vec{g} = (m + l_m N) \frac{n}{N}$$

• Evaluate

$$\vec{f}(\vec{x}_n) = \sum_{\vec{k} \in K_N} \vec{f}(\vec{k}) e^{2\pi i \vec{k}^T \cdot \vec{x}_n} = \sum_{m=0}^{N-1} \vec{f}(\vec{k}_m) e^{2\pi i \vec{k}_m^T \cdot \vec{x}_n}$$
$$= \sum_{m=0}^{N-1} \vec{f}(\vec{k}_m) e^{2\pi i (m\frac{n}{N} + l_m n)}$$

• Choice of wave vectors

$$K_N := \{\vec{k}_0, \dots, \vec{k}_{N-1}\} \subset \mathbb{Z}^s$$

such that

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

since then

$$\vec{k}_m^T \cdot \vec{x}_n = \vec{k}_m^T \cdot \frac{n}{N} \vec{g} = (m + l_m N) \frac{n}{N}$$

• Evaluate

$$\vec{f}(\vec{x}_n) = \sum_{\vec{k} \in K_N} \vec{f}(\vec{k}) e^{2\pi i \vec{k}^T \cdot \vec{x}_n} = \sum_{m=0}^{N-1} \vec{f}(\vec{k}_m) e^{2\pi i \vec{k}_m^T \cdot \vec{x}_n}$$

$$= \sum_{m=0}^{N-1} \vec{f}(\vec{k}_m) e^{2\pi i (m\frac{n}{N} + l_m n)}$$

$$= \sum_{m=0}^{N-1} \vec{f}(\vec{k}_m) e^{2\pi i m\frac{n}{N}}$$

by **one-dimensional** Fourier transform \Rightarrow **way to break curse of dimension !**

Determining the Wave Vectors

• Many possible choices for

 $\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$

Determining the Wave Vectors

• Many possible choices for

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

• Choose largest waves first

• Enumerate along lines of constant $\|\cdot\|_1$ -norm

Summary

- Quasi-Monte Carlo simpler and faster than Monte Carlo integration
- Most Monte Carlo techniques transfer
- However, no rejection sampling !
- Works fine on L^2 , too
 - justification by discrete density approximation
- Breaks curse of dimension even for discrete Fourier transform

Summary

- Quasi-Monte Carlo simpler and faster than Monte Carlo integration
- Most Monte Carlo techniques transfer
- However, no rejection sampling !
- Works fine on L^2 , too
 - justification by discrete density approximation
- Breaks curse of dimension even for discrete Fourier transform

Use whenever you can write the problem as an integral

Beyond Monte Carlo

- Day 1: Monte Carlo
- Day 2: Quasi-Monte Carlo points
- Day 3: Quasi-Monte Carlo integration
- Day 4: Monte Carlo extensions of quasi-Monte Carlo
- Day 5: Applications to computer graphics

Day 4: Monte Carlo Extensions of Quasi-Monte Carlo

- Random field synthesis on good lattice points
- Randomized quasi-Monte Carlo integration
- Randomized replications
- Restricted randomized replications

- Applications of Periodic Random Fields $\vec{f}_{\omega}(\vec{x}) = \vec{f}_{\omega}(\vec{x} + \vec{z})$ for $\vec{z} \in \mathbb{Z}^s$ (Period 1)
 - height fields: Waves, terrain
 - caustics
 - turbulent wind fields

- Applications of Periodic Random Fields $\vec{f}_{\omega}(\vec{x}) = \vec{f}_{\omega}(\vec{x} + \vec{z})$ for $\vec{z} \in \mathbb{Z}^s$ (Period 1)
 - height fields: Waves, terrain
 - caustics
 - turbulent wind fields
- Typical procedure
 - 1. Realize Gaussian noise

 $ec{N}_{\omega}(ec{k}) \sim (\mathcal{N}(0,1) imes i \mathcal{N}(0,1))^d$

- Applications of Periodic Random Fields $\vec{f}_{\omega}(\vec{x}) = \vec{f}_{\omega}(\vec{x} + \vec{z})$ for $\vec{z} \in \mathbb{Z}^s$ (Period 1)
 - height fields: Waves, terrain
 - caustics
 - turbulent wind fields
- Typical procedure
 - 1. Realize Gaussian noise

 $ec{N_\omega}(ec{k}) \sim (\mathcal{N}(0,1) imes i\mathcal{N}(0,1))^d$

2. Filter noise by spectrum S of phenomenon

 $\vec{\hat{f}}_{\omega}(\vec{k}) = S(\vec{k})\vec{N}_{\omega}(\vec{k})$

- Applications of Periodic Random Fields $\vec{f}_{\omega}(\vec{x}) = \vec{f}_{\omega}(\vec{x} + \vec{z})$ for $\vec{z} \in \mathbb{Z}^s$ (Period 1)
 - height fields: Waves, terrain
 - caustics
 - turbulent wind fields
- Typical procedure
 - 1. Realize Gaussian noise

 $ec{N_\omega(ec{k})} \sim (\mathcal{N}(0,1) imes i \mathcal{N}(0,1))^d$

2. Filter noise by spectrum S of phenomenon

 $\vec{\hat{f}}_{\omega}(\vec{k}) = S(\vec{k})\vec{N}_{\omega}(\vec{k})$

3. Band limited evaluation by fast Fourier transform

$$\vec{f}_{\omega}(\vec{x}) = \sum_{\vec{k} \in K_N} \vec{f}_{\omega}(\vec{k}) e^{2\pi i \vec{k}^T \cdot \vec{x}}$$
Fourier Transform on Rank-1 Lattices

• Choice of wave vectors $K_N := \{\vec{k}_0, \dots, \vec{k}_{N-1}\} \subset \mathbb{Z}^s$ such that

$$\vec{k}_m \in Z_m := \{ \vec{k} \in \mathbb{Z}^s \mid \vec{k}^T \cdot \vec{g} \equiv m \pmod{N} \}$$

hence with $x_n = \frac{n}{N}\vec{g}$

$$\vec{k}_m^T \cdot \vec{x}_n = \vec{k}_m^T \cdot \frac{n}{N} \vec{g} = (m + l_m N) \frac{n}{N}$$

• By **one-dimensional** Fourier transform evaluate

$$\vec{f}(\vec{x}_{n}) = \sum_{\vec{k} \in K_{N}} \vec{f}_{\omega}(\vec{k}) e^{2\pi i \vec{k}^{T} \cdot \vec{x}_{n}} = \sum_{m=0}^{N-1} \vec{f}_{\omega}(\vec{k}_{m}) e^{2\pi i \vec{k}_{m}^{T} \cdot \vec{x}_{n}}$$

$$= \sum_{m=0}^{N-1} \vec{f}_{\omega}(\vec{k}_{m}) e^{2\pi i (m_{N}^{n} + l_{m}n)}$$

$$= \sum_{m=0}^{N-1} \vec{f}_{\omega}(\vec{k}_{m}) e^{2\pi i m_{N}^{n}}$$

Application: Ocean Wave Simulation

• Ocean height field synthesis

1. Realize Gaussian noise random field $\xi_{r,m}, \xi_{i,m} \sim \mathcal{N}(0,1)$

Application: Ocean Wave Simulation

- Ocean height field synthesis
 - 1. Realize Gaussian noise random field $\xi_{r,m}, \overline{\xi_{i,m}} \sim \mathcal{N}(0,1)$
 - 2. Fourier coefficients by filtering with Philipps spectrum $P_h(k_m)$

$$\hat{h}_{\omega}(\vec{k}_{m},t) = \sqrt{\frac{P_{h}(k_{m})}{2}} \left((\xi_{r,m} + i\xi_{i,m})e^{i\omega(k_{m})t} + (\xi_{r,m} - i\xi_{i,m})e^{-i\omega(k_{m})t} \right)$$

Application: Ocean Wave Simulation

- Ocean height field synthesis
 - 1. Realize Gaussian noise random field $\xi_{r,m}, \xi_{i,m} \sim \mathcal{N}(0,1)$
 - 2. Fourier coefficients by filtering with Philipps spectrum $P_h(k_m)$

$$\hat{h}_{\omega}(\vec{k}_m, t) = \sqrt{\frac{P_h(k_m)}{2}} \left((\xi_{r,m} + i\xi_{i,m})e^{i\omega(k_m)t} + (\xi_{r,m} - i\xi_{i,m})e^{-i\omega(k_m)t} \right)$$

3. Height field $h_{\omega} : \mathbb{R}^3 \to \mathbb{R}$ and normals by $\nabla h_{\omega} : \mathbb{R}^3 \to \mathbb{R}^3$

$$h_{\omega}(\vec{x}_n, t) = \sum_{\substack{m=0\\ N-1}}^{N-1} \hat{h}_{\omega}(\vec{k}_m, t) e^{2\pi i m \frac{n}{N}}$$
$$\nabla h_{\omega}(\vec{x}_n, t) = \sum_{\substack{m=0\\ m=0}}^{N-1} 2\pi i \vec{k}_m \hat{h}_{\omega}(\vec{k}_m, t) e^{2\pi i m \frac{n}{N}}$$

 $\Rightarrow \dim \vec{x}_n = 2$, but evaluation by **one-dimensional** fast Fourier transform

Example: Ocean Waves on Fibonacci Rank-1 Lattices

- Fibonacci numbers: $F_1 = F_2 = 1$, $F_k = F_{k-1} + F_{k-2}$ for k > 2
- Fibonacci lattice by generator vector $\vec{g} = (1, F_{k-1})$ at $N = F_k$ points

$$\vec{x}_n := \frac{n}{F_k} (1, F_{k-1})$$

- Low discrepancy
- Example: $N = F_{10} = 55$, $\vec{x}_n := \frac{n}{55}(1, 34)$

• Barycentric interpolation on periodic Delauney triangulation

Periodic Tiling

Periodic Tiling

Breaking the Curse of Dimension

- Point set $P_N = \{x_0, \dots, x_{N-1}\}$
- Monte Carlo Integration: Random points P_N

$$\operatorname{Prob}\left(\left\{\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < \frac{3}{\sqrt{N}}\sigma(f)\right\}\right) \approx 0.997$$

- slow
- cheap error estimate
- easy math for L^2
- Quasi-Monte Carlo Integration: Quasi-Monte Carlo points P_N

$$\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < D^*(P_N)V(f)$$

- fast
- no error estimate
- heavy math for BV

Breaking the Curse of Dimension

- Point set $P_N = \{x_0, \dots, x_{N-1}\}$
- Monte Carlo Integration: Random points P_N

$$\operatorname{Prob}\left(\left\{\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < \frac{3}{\sqrt{N}}\sigma(f)\right\}\right) \approx 0.997$$

- slow
- cheap error estimate
- easy math for L^2
- Quasi-Monte Carlo Integration: Quasi-Monte Carlo points P_N

$$\left|\int_{I^s} f(x)dx - \frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right| < D^*(P_N)V(f)$$

- fast
- no error estimate
- heavy math for BV
- Combine and take the best !
- Price: A little bit of convergence, problems of random number generators

• Randomized replications of a QMC point set $A := \{A_0, \dots, A_{n-1}\}$

$$X_{k} := \{X_{k,0}, \dots, X_{k,n-1}\}$$
 for $1 \le k \le r$

such that

- 1. Uniformity: $X_{k,i} \sim U[0,1)^s$ for fixed *i*
- 2. Equidistribution: X_1, \ldots, X_r are low-discrepancy point sets with probability one

• Randomized replications of a QMC point set $A := \{A_0, \dots, A_{n-1}\}$

$$X_{k} := \{X_{k,0}, \dots, X_{k,n-1}\}$$
 for $1 \le k \le r$

such that

- 1. Uniformity: $X_{k,i} \sim U[0,1)^s$ for fixed *i*
- 2. Equidistribution: X_1, \ldots, X_r are low-discrepancy point sets with probability one
- Monte Carlo estimate

$$I_{r,n}f := \frac{1}{r} \sum_{k=1}^{r} \frac{1}{n} \sum_{i=0}^{n-1} f(X_{k,i})$$

• Randomized replications of a QMC point set $A := \{A_0, \ldots, A_{n-1}\}$

$$X_{k} := \{X_{k,0}, \dots, X_{k,n-1}\}$$
 for $1 \le k \le r$

such that

- 1. Uniformity: $X_{k,i} \sim U[0,1)^s$ for fixed *i*
- 2. Equidistribution: X_1, \ldots, X_r are low-discrepancy point sets with probability one
- Monte Carlo estimate

$$I_{r,n}f := \frac{1}{r} \sum_{k=1}^{r} \frac{1}{n} \sum_{i=0}^{n-1} f(X_{k,i})$$

with error estimate

$$\sigma^{2}(I_{r,n}f) \approx \frac{1}{r(r-1)} \sum_{k=1}^{r} \left(\frac{1}{n} \sum_{i=0}^{n-1} f(X_{k,i}) - I_{r,n}f \right)^{2}$$

• Randomized replications of a QMC point set $A := \{A_0, \ldots, A_{n-1}\}$

$$X_k := \{X_{k,0}, \dots, X_{k,n-1}\} \text{ for } 1 \le k \le r$$

such that

- 1. Uniformity: $X_{k,i} \sim U[0,1)^s$ for fixed *i*
- 2. Equidistribution: X_1, \ldots, X_r are low-discrepancy point sets with probability one
- Monte Carlo estimate

$$I_{r,n}f := \frac{1}{r} \sum_{k=1}^{r} \frac{1}{n} \sum_{i=0}^{n-1} f(X_{k,i})$$

with error estimate

$$\sigma^{2}(I_{r,n}f) \approx \frac{1}{r(r-1)} \sum_{k=1}^{r} \left(\frac{1}{n} \sum_{i=0}^{n-1} f(X_{k,i}) - I_{r,n}f\right)^{2}$$

• Presmoothing of the integrand by correlated sampling

Randomized Replications

• Random bijections

 $R_{\omega}: I^s \to I^s$

- in fact dependent sampling replication heuristics

Randomized Replications

• Random bijections

 $R_{\omega}: I^s \to I^s$

- in fact dependent sampling replication heuristics
- Cranley-Patterson rotations
 - originally designed for error estimation with lattice points
 - very simple

Randomized Replications

• Random bijections

 $R_{\omega}: I^s \to I^s$

- in fact dependent sampling replication heuristics
- Cranley-Patterson rotations
 - originally designed for error estimation with lattice points
 - very simple
- Owen-Scrambling
 - designed for (t, m, s)-nets and (t, s)-sequences in base b
 - advanced

• Random shifts on the torus I^s applied to A

• Random shifts on the torus I^s applied to A

- Originally *A* was a lattice of low discrepancy
- Note: Cranley-Patterson rotations work with any arbitrary point set A
 - still unbiased Monte Carlo scheme

• Random shifts on the torus I^s applied to A

- Originally *A* was a lattice of low discrepancy
- Note: Cranley-Patterson rotations work with any arbitrary point set A
 - still unbiased Monte Carlo scheme
 - especially for (t, s)-sequences and (t, m, s)-nets
 - * however discrepancy can be affected due to shifting

• Random shifts on the torus I^s applied to A

- Originally *A* was a lattice of low discrepancy
- Note: Cranley-Patterson rotations work with any arbitrary point set A
 - still unbiased Monte Carlo scheme
 - especially for (t, s)-sequences and (t, m, s)-nets
 - * however discrepancy can be affected due to shifting
 - example: Padded replications sampling
 - * pad A by low dimensional point sets, apply random shifts
 - * exploit problem structure, e.g. in transport problems
 - * cheaper point sets than quasi-Monte Carlo points in high dimensions

Randomized Replications by Owen-Scrambling

- Scramble (t, m, s)-nets and (t, s)-sequences in base b
- Algorithm: Start with $H = I^s$ and for each axis
 - 1. slice *H* into *b* equally sized volumes H_1, H_2, \ldots, H_b along the axis
 - 2. randomly permute these volume
 - 3. for each H_h recursively repeat the procedure with $H = H_h$

Randomized Replications by Owen-Scrambling

- Scramble (t, m, s)-nets and (t, s)-sequences in base b
- Algorithm: Start with $H = I^s$ and for each axis
 - 1. slice *H* into *b* equally sized volumes H_1, H_2, \ldots, H_b along the axis
 - 2. randomly permute these volume
 - 3. for each H_h recursively repeat the procedure with $H = H_h$
- Algorithm gets finite by finite precision of computation, i.e. digital constructions
- Net and sequence parameters remain untouched
 - contrary to random shifts by Cranley-Patterson

Randomized Replications by Owen-Scrambling

- Scramble (t, m, s)-nets and (t, s)-sequences in base b
- Algorithm: Start with $H = I^s$ and for each axis
 - 1. slice *H* into *b* equally sized volumes H_1, H_2, \ldots, H_b along the axis
 - 2. randomly permute these volume
 - 3. for each H_h recursively repeat the procedure with $H = H_h$
- Algorithm gets finite by finite precision of computation, i.e. digital constructions
- Net and sequence parameters remain untouched
 - contrary to random shifts by Cranley-Patterson
- Much faster convergence for $N > s^s$

$$\mathcal{O}\left(\frac{\log^{\frac{s-1}{2}}N}{N^{\frac{3}{2}}}\right)$$

due to extinction effects by full stratification

• Unit square $[0,1)^2$

• Bit 1 of x

• Bit 2 of x

• Bit 3 of *x*

• All bits of x

• All bits of x and y

Formalization of Scrambling

• Given a digital (t, m, s)-net $A = \{A_0, \dots, A_{N-1}\}$ in base b with components

$$A_i^{(j)} = \sum_{k=1}^M a_{i,k}^{(j)} \cdot b^{-k} =_b 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)}$$

Formalization of Scrambling

• Given a digital (t, m, s)-net $A = \{A_0, \dots, A_{N-1}\}$ in base b with components

$$A_i^{(j)} = \sum_{k=1}^M a_{i,k}^{(j)} \cdot b^{-k} =_b 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)}$$

• A scrambled replicate X of A is obtained by

$$X_{i}^{(j)} = \sum_{k=1}^{M} x_{i,k}^{(j)} \cdot b^{-k} =_{b} 0.x_{i,1}^{(j)} x_{i,2}^{(j)} x_{i,3}^{(j)} \cdots x_{i,M}^{(j)}$$

Formalization of Scrambling

• Given a digital (t, m, s)-net $A = \{A_0, \dots, A_{N-1}\}$ in base b with components

$$A_i^{(j)} = \sum_{k=1}^M a_{i,k}^{(j)} \cdot b^{-k} =_b 0.a_{i,1}^{(j)} a_{i,2}^{(j)} \dots a_{i,M}^{(j)}$$

• A scrambled replicate X of A is obtained by

$$X_{i}^{(j)} = \sum_{k=1}^{M} x_{i,k}^{(j)} \cdot b^{-k} =_{b} 0.x_{i,1}^{(j)} x_{i,2}^{(j)} x_{i,3}^{(j)} \cdots x_{i,M}^{(j)}$$

where

$$\begin{aligned} x_{i,1}^{(j)} &:= \pi^{(j)} \left(a_{i,1}^{(j)} \right) \\ x_{i,2}^{(j)} &:= \pi^{(j)}_{a_{i,1}^{(j)}} \left(a_{i,2}^{(j)} \right) \\ &: \\ x_{i,M}^{(j)} &:= \pi^{(j)}_{a_{i,1}^{(j)}, a_{i,2}^{(j)}, \dots, a_{i,M-1}^{(j)}} \left(a_{i,M}^{(j)} \right) \end{aligned}$$

- Independent random permutations $\pi^{(j)} \in S_b$
- Permutation depends on the k-1 leading digits of $A_i^{(j)} \Rightarrow$ permutation tree

Efficient Implementation of Scrambling

- Main ideas for efficient scrambling:
 - keep only one path of the permutation tree in memory
 - traverse permutation tree paths that way, that each permutation is used only once

Efficient Implementation of Scrambling

- Main ideas for efficient scrambling:
 - keep only one path of the permutation tree in memory
 - traverse permutation tree paths that way, that each permutation is used only once
- Implies reordering of the points that should be scrambled
 - sorting the components

$$A^{(j)} = \{A_0^{(j)}, \dots, A_{N-1}^{(j)}\} \to A_{\sigma_j(0)}^{(j)} \le \dots \le A_{\sigma_j(N-1)}^{(j)}$$

- in this order scramble the components
 - \Rightarrow each branch of the permutation tree is traversed at most once
- undo the sorting using the inverse permutation σ_i^{-1}

Example: Scrambled (0, m, 2)-Nets in Base b = 2

•
$$N = 2^m$$
 points $A = \{A_0, \dots, A_{N-1}\}$

- The components correspond to the inverse permutations $\sigma_i^{-1}(i) = N \cdot A_i^{(j)}$
 - e.g. Hammersley: $\sigma_0^{-1}(i) = 2^m \cdot \frac{i}{N}$ and $\sigma_1^{-1}(i) = 2^m \cdot \Phi_2(i)$
- Random permutations on \mathbb{Z}_2 are random bit flips and can be vectorized
 - i.e. applying a path of permutation means XORing the bit vector of bit permutations

Example: Scrambled (0, m, 2)-Nets in Base b = 2

•
$$N = 2^m$$
 points $A = \{A_0, \dots, A_{N-1}\}$

- The components correspond to the inverse permutations $\sigma_i^{-1}(i) = N \cdot A_i^{(j)}$
 - e.g. Hammersley: $\sigma_0^{-1}(i) = 2^m \cdot \frac{i}{N}$ and $\sigma_1^{-1}(i) = 2^m \cdot \Phi_2(i)$
- Random permutations on \mathbb{Z}_2 are random bit flips and can be vectorized
 - i.e. applying a path of permutation means XORing the bit vector of bit permutations

- Scrambling the component *j*:
 - start out with a random bit vector and save it in $X_{\sigma_i^{-1}(0)}^{(j)}$
 - permutation tree traversal by enumerating $i = 1, \ldots, 2^m 1$
 - * detect were tree ramifies: Number f of leading shared digits of i 1 and i
 - * XOR a bit vector with f leading zeros followed by a 1 filled by random bits

 \equiv change the branch and choose new random permutations π

* store result in $X^{(j)}_{\sigma_i^{-1}(i)}$
Implementation: Scrambled Hammersley Point Set

N = 1 << m;

```
Digits = get_32_random_bits();
P(0, 0) = (double) Digits / (double) 0x10000000L;
Digits2 = get_32_random_bits();
P(0, 1) = (double) Digits2 / (double) 0x10000000L;
for(i = 1; i < N; i++)
   Difference = (i - 1) \land i;
   for(Bits = 0; Difference; Bits++)
      Difference >>= 1;
   Shift = Log - Bits;
   Digits \wedge = (0 \times 80000000 | get_31 \text{ random bits}()) >> Shift;
   P(i, 0) = (double) Digits / (double) 0x10000000L;
   Digits2 \wedge = (0 \times 80000000 \mid \text{get}_{31} \times \text{random}_{bits}) >> \text{Shift};
   P((int) ((double) N * \Phi_2(i)), 1) = (double) Digits2
              / (double) 0x1000000L;
```

- Random scrambling preserves the net properties
- Uniformly random, Stratified, Latin Hypercube sample, and even more...

- Random scrambling preserves the net properties
- Uniformly random, Stratified, Latin Hypercube sample, and even more...

- Random scrambling preserves the net properties
- Uniformly random, Stratified, Latin Hypercube sample, and even more...

- Random scrambling preserves the net properties
- Uniformly random, Stratified, Latin Hypercube sample, and even more...

- Random scrambling preserves the net properties
- Uniformly random, Stratified, Latin Hypercube sample, and even more...

- Random scrambling preserves the net properties
- Uniformly random, Stratified, Latin Hypercube sample, and even more...

- All instances are of low discrepancy
- Not all instances are equally good...

Another Instance of a Randomly Scrambled (0,4,2)-Net

- All instances are of low discrepancy
- Not all instances are equally good...

• Increase efficiency by splitting

$$\frac{1}{N}\sum_{i=0}^{N-1}f(x_i, y_i) \approx \int_{I^{s_1}}\int_{I^{s_2}}f(x, y)dxdy$$

• Increase efficiency by splitting

$$\frac{1}{N}\sum_{i=0}^{N-1} f(x_i, y_i) \approx \int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dx dy \approx \frac{1}{Ns} \sum_{i=0}^{N-1} \sum_{j=0}^{s-1} f(x_i, y_{i,j})$$

depending on the correlation coefficient of $f(\xi, \eta)$ and $f(\xi, \eta')$

• Increase efficiency by splitting

$$\frac{1}{N}\sum_{i=0}^{N-1} f(x_i, y_i) \approx \int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dx dy \approx \frac{1}{Ns} \sum_{i=0}^{N-1} \sum_{j=0}^{s-1} f(x_i, y_{i,j})$$

depending on the correlation coefficient of $f(\xi, \eta)$ and $f(\xi, \eta')$

• Exploit smoothness by correlated sampling

$$\sum_{j=1}^{M} \frac{1}{N_j} \sum_{i=0}^{N_j-1} f_j(x_{i,j}) \approx \sum_{j=1}^{M} \int_{I^s} f_j(x) dx$$

• Increase efficiency by splitting

$$\frac{1}{N}\sum_{i=0}^{N-1} f(x_i, y_i) \approx \int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dx dy \approx \frac{1}{Ns} \sum_{i=0}^{N-1} \sum_{j=0}^{s-1} f(x_i, y_{i,j})$$

depending on the correlation coefficient of $f(\xi, \eta)$ and $f(\xi, \eta')$

• Exploit smoothness by correlated sampling

$$\sum_{j=1}^{M} \frac{1}{N_j} \sum_{i=0}^{N_j-1} f_j(x_{i,j}) \approx \sum_{j=1}^{M} \int_{I^s} f_j(x) dx$$
$$= \int_{I^s} \sum_{j=1}^{M} f_j(x) dx \approx \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=1}^{M} f_j(x_i)$$

e.g. separation of the main part

• Integrals invariant under Cranley-Patterson rotation by $z_i \in I^{s_2}$

$$\begin{array}{rccc} R_j : I^{s_2} & \to & I^{s_2} \\ y & \mapsto & (y+z_j) \bmod 1 \end{array} \Rightarrow \quad \int_{I^{s_2}} g(y) dy = \int_{I^{s_2}} g(R_j(y)) dy$$

• Integrals invariant under Cranley-Patterson rotation by $z_i \in I^{s_2}$

$$\begin{array}{rccc} R_j : I^{s_2} & \to & I^{s_2} \\ y & \mapsto & (y+z_j) \bmod 1 \end{array} \Rightarrow \quad \int_{I^{s_2}} g(y) dy = \int_{I^{s_2}} g(R_j(y)) dy$$

• Presmoothing of selected dimensions by replication

$$\int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx = \int_{I^{s_1}} \int_{I^{s_2}} \frac{1}{M} \sum_{j=0}^{M-1} f(x, R_j(y)) dy dx$$

• Integrals invariant under Cranley-Patterson rotation by $z_i \in I^{s_2}$

$$\begin{array}{rccc} R_j : I^{s_2} & \to & I^{s_2} \\ y & \mapsto & (y+z_j) \bmod 1 \end{array} \quad \Rightarrow \quad \int_{I^{s_2}} g(y) dy = \int_{I^{s_2}} g(R_j(y)) dy$$

• Presmoothing of selected dimensions by replication

$$\int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx = \int_{I^{s_1}} \int_{I^{s_2}} \frac{1}{M} \sum_{j=0}^{M-1} f(x, R_j(y)) dy dx$$
$$\approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{M} \sum_{j=0}^{M-1} f(x_i, R_j(y_i))$$
$$= \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{M} \sum_{j=0}^{M-1} f(x_i, (y_i + z_j) \mod 1)$$

- global quadrature rule $P_{N,s_1+s_2} = (x_i, y_i)_{i=0}^{N-1}$

• Integrals invariant under Cranley-Patterson rotation by $z_i \in I^{s_2}$

$$\begin{array}{rccc} R_j : I^{s_2} & \to & I^{s_2} \\ y & \mapsto & (y+z_j) \bmod 1 \end{array} \Rightarrow & \int_{I^{s_2}} g(y) dy = \int_{I^{s_2}} g(R_j(y)) dy \end{array}$$

• Presmoothing of selected dimensions by replication

$$\begin{aligned} \int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx &= \int_{I^{s_1}} \int_{I^{s_2}} \frac{1}{M} \sum_{j=0}^{M-1} f(x, R_j(y)) dy dx \\ &\approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{M} \sum_{j=0}^{M-1} f(x_i, R_j(y_i)) \\ &= \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{M} \sum_{j=0}^{M-1} f(x_i, (y_i + z_j) \mod 1) \end{aligned}$$

- global quadrature rule $P_{N,s_1+s_2} = (x_i, y_i)_{i=0}^{N-1}$
- local quadrature rule $P_{M,s_2} = (z_j)_{j=0}^{M-1}$

• Integrals invariant under Cranley-Patterson rotation by $z_i \in I^{s_2}$

$$\begin{array}{rccc} R_j : I^{s_2} & \to & I^{s_2} \\ y & \mapsto & (y+z_j) \bmod 1 \end{array} \quad \Rightarrow \quad \int_{I^{s_2}} g(y) dy = \int_{I^{s_2}} g(R_j(y)) dy$$

• Presmoothing of selected dimensions by replication

$$\begin{aligned} \int_{I^{s_1}} \int_{I^{s_2}} f(x, y) dy dx &= \int_{I^{s_1}} \int_{I^{s_2}} \frac{1}{M} \sum_{j=0}^{M-1} f(x, R_j(y)) dy dx \\ &\approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{M} \sum_{j=0}^{M-1} f(x_i, R_j(y_i)) \\ &= \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{M} \sum_{j=0}^{M-1} f(x_i, (y_i + z_j) \mod 1) \end{aligned}$$

- global quadrature rule $P_{N,s_1+s_2} = (x_i, y_i)_{i=0}^{N-1}$

- local quadrature rule
$$P_{M,s_2} = (z_j)_{j=0}^{M-1}$$

 \Rightarrow Trajectories split by dependent sampling

Further Randomization Techniques

- Padding quasi-Monte Carlo points for high dimensions
 - by random numbers
 - by Latin hypercube samples

Further Randomization Techniques

- Padding quasi-Monte Carlo points for high dimensions
 - by random numbers
 - by Latin hypercube samples
- Jittered quasi-Monte Carlo point sets
 - Latin hypercube samples, however deterministic permutation **Note:** Rate of randomly permuted Latin hypercube samples does not apply !
 - e.g. (0, m, 2)-net with jitter of size b^{-m}

Further Randomization Techniques

- Padding quasi-Monte Carlo points for high dimensions
 - by random numbers
 - by Latin hypercube samples
- Jittered quasi-Monte Carlo point sets
 - Latin hypercube samples, however deterministic permutation
 Note: Rate of randomly permuted Latin hypercube samples does not apply !
 e.g. (0, m, 2)-net with jitter of size b^{-m}
- Latin supercube sampling
 - biased
 - unbiased if used for decorrelating padded replications sampling

Summary

- Random field synthesis on good lattice points
- Randomized quasi-Monte Carlo integration
 - error estimate
 - **-** L²
 - almost as fast as pure quasi-Monte Carlo integration
 - concept of randomized replications
- Dependent splitting

Our Research

- Monte Carlo methods
- Quasi-Monte Carlo methods (*mental ray*)
- Randomized quasi-Monte Carlo methods
- Quantum complexity

Visit us at

www.uni-kl.de/AG-Heinrich

Acknowledgements

- Peter Schröder, CalTech MultiRes Group, Pasadena CA, USA
- Rolf Herken, mental images, Berlin, Germany

See you at SIGGRAPH 2001...