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— no real random on classical deterministic computers
— real random by measuring quantum registers



Beyond Monte Carlo

o : Monte Carlo
— random sampling

° . Quasi-Monte Carlo integration
— low-discrepancy sampling by deterministic nets, sequences, and lattices



Beyond Monte Carlo

o : Monte Carlo
— random sampling

° . Quasi-Monte Carlo integration
— low-discrepancy sampling by deterministic nets, sequences, and lattices

° = . Monte Carlo extensions of quasi-Monte Carlo
— random field synthesis on good lattice points
— randomized quasi-Monte Carlo integration



Beyond Monte Carlo

o : Monte Carlo
— random sampling

° . Quasi-Monte Carlo integration
— low-discrepancy sampling by deterministic nets, sequences, and lattices

° = . Monte Carlo extensions of quasi-Monte Carlo
— random field synthesis on good lattice points
— randomized quasi-Monte Carlo integration

. Derandomized randomized quasi-Monte Carlo integration
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Beyond Monte Carlo: Applications in Computer Graphics

° . Industry standard RenderMan by PIXAR
— stratified random sampling

e OMC: Derandomized RenderMan
— new graphics hardware

e OMC: Ocean wave synthesis
— discrete Fourier transform independent of dimension
QMC: Error estimation for bidirectional path tracing
— simpler algorithms

e D OMC: Industry standard mental ray by mental images
— deterministic correlated low discrepancy sampling
— fastest performance
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Reworking the Classics of Computer Graphics

e Uncorrelated sampling
— correlated sampling more efficient

e Uniformity is sufficient
— low-discrepancy sampling more efficient

e Sampling points from classical space filling curves
— not of low discrepancy

e Either stratification or Latin hypercube sampling
— you can have both and even more...

e One dimensional stratified Monte Carlo integration
— Cranley-Patterson rotations more efficient

e Antialiasing only by random sampling
— deterministic low-discrepancy sampling more efficient



Program

e Day 2: Quasi-Monte Carlo points

e Day 3: Quasi-Monte Carlo integration

e Day 4: Monte Carlo extensions of quasi-Monte Carlo
e Day 5: Applications to computer graphics

Techniques for basically all high-dimensional integration and transport problems



Day 1. Monte Carlo

Simulation of random variables and fields
Monte Carlo integration

Method of dependent tests

Multilevel method of dependent tests
Dependent sampling

Replication heuristics

Regularization of the samples



Probability Spaces, Random Variables and Random Fields

e Definition: A probability space is given by a set 2 = {wq,wn, ...} of elementary
events w;, where each elementary event is assigned a probability with

0 <Prob(w;) <1 and > Prob (w) = 1.
wes?

E C Qs called event with

Prob (E) = )  Prob (w).
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e Definition: A probability space is given by a set 2 = {wq,wn, ...} of elementary
events w;, where each elementary event is assigned a probability with

0 <Prob(w;) <1 and > Prob (w) = 1.
wes?

E C Qs called event with
Prob (E) = )  Prob (w).
wek
e Definition: Given a probability space on the set of elementary events €2, a mapping
X:©2 — R
w — Xy

IS called a random variable . X, is called a realization .

e Definition: A random field (also called random function )
X :Q — C(s,d)
w — Xu
maps the space of elementary events 2 into the space of continuous functions C(s, d).
If s = 1 the random fields can be called random process .



Discrete Random Variables

e Definition: If the probability space €2 is finite or countable, the random variable X is
discrete .
Px : R — [0,1]
z — Prob(X <z)= ) Prob(X =2z')

/' <z
Is called cumulative distribution function (cdf) of the random variable X.



Continuous Random Variables

e Definition: A continuous random variable X and its underlying (real) probability
space are defined by an integrable density function

px : R— RT

with the property [rpx(z)dz = 1. Aset A C R that can be built by the union A =
U, I, of countably many pair-wise disjoint intervals of arbitrary kind (open, closed,
half-open, one-sided infinite) is called event. X takes a value from A with

Prob (A) =/ px(xz)dr = Z/ px(x)dz.
A I,
The cumulative distribution function (cdf) IS

Py () = Prob (X < z) = Prob ({t € R|t < z}) = /le px (£)dt.
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e Properties of the cumulative distribution function
— monotonicity and continuity
— limg— oo Px(x) =0
— limg—oo Px(x) =1

e Corollary: Any differentiable function P that fulfills the above properties can be as-
signed a probability density function by

p = P/(2).
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Uniform Distribution ¢/ on [0, 1)%

e Probability density function

1 x€]0,1)%
0O else

py(z) = {

e Requirements for simulation, i.e. realization
— fast, deterministic algorithms
— mimic independence
= pseudo-random numbers

e Example: Linear congruential generators (starting value zq)

zi+1 = (az;+c) modm €{0,...,m—1}
Zi+1

Eit1 =
— discrete subset of [0, 1)
— finite period
— choice of a, ¢, m crucial for good statistical properties
— parallelization difficult



The Multidimensional Inversion Method

e Forp(z) > Oforz € I° and [;s p(x)dx < oo realize p-distributed samples
P~ l(z) =W, ., y)) =y

from x ~ U by successively determining
y using P = (y),
y(2) using 2(2) — FQ(y(l), y(Z))

using the bijections
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The Multidimensional Inversion Method

e Forp(z) > Oforz € I° and [;s p(x)dx < oo realize p-distributed samples
P~ l(z) =W, ., y)) =y

from x ~ U by successively determining
y using P = (y),
y(2) using 2(2) — FQ(y(l), y(Z))

using the bijections

b 1 1
_ fO]fO fO p(t].)'°°7tj—177-j7°”77—8)de"'de
folfol”’fOlp(tla"'7tj—177-j7"-77-8)de"'de

o Ifp(z) = 15—, P19 (z(1))

Fj(tl, e ,tj) ;

Fj(t5) =

e Note: P—1 not unique, since there exist many mappings of the unit cube onto itself



Composition Method

e Simulation of composite probability density functions

K K
p(z) = > wpi(z) w; € RT, Y w;=1
i=1 i=1
1. fix index z using & ~ U

1—1 7
D> wi<E< ) wy,
j=1 j=1

l.e. simulate a discrete random variable with Prob (w;) = w;
2. efficiently simulate p; by

—1
§ — 2321 Wy

)
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using only one random number



Composition Method

e Simulation of composite probability density functions

K K
p(z) = Y wppi(x) w; € RT, Y w;=1
- =1l

1. fix index z using & ~ U

1—1 1
D> wi<E< )y wy,
1=1 1=1

l.e. simulate a discrete random variable with Prob (w;) = w;
2. efficiently simulate p; by

—1
§ — 2321 Wy

)

cl

using only one random number
e Note: The composition method can raise variance.

e Applications: Russian Roulette, stochastic evaluation of sums
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Selection Methods

e Neumann rejection method, if ||p|lco < b < 00
— Choose two independent realizations of uniform random numbers &, ~ U
— If p(&) > b take £ as a sample
— else reject £ and try again
e Efficiency depends on graph of p
e Generalized Neumann rejection method
— density separable, i.e. p(z) = p1(z(1)) - po(x(2)
— multidimensional inversion method on invertible part p»

— Neumann rejection method on pq

e Metropolis sampling algorithm
— construct Markov chain with desired density p as stationary density

e Construction dimension , i.e. random numbers required for one realization

— now only finite expectation



Special Methods: Normal Distribution N (u, o)

e Probability density function

1 _(z—pw)?

IN(uo) (@) = e 22

— expectation g

— variance o2

e Trick: Simulate a pair (X,Y) ~ AN (0,1) x (0, 1)
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Special Methods: Normal Distribution N (u, o)

e Probability density function

1 _(@-w)?

IN(uo) (@) = o=re 207

— expectation g

— variance o2

e Trick: Simulate a pair (X,Y) ~ AN (0,1) x (0, 1)

1 _224y? 1 _r2
In,0)(®)  fno,y(Wdedy = 5— e 2 “dedy = _—- e Zrdrdd

27

e Polar method (Box-Mdller)

(X,Y) = \/—2 In(1 — &) - (cos2nv, Sin 27v)
where £&,v ~ U on [0, 1)



Simulation of Periodic Random Fields

e Typical realization procedure of X : Q2 — C(s, d)

1. Realize Gaussian noise on s-dimensional regular grid K

No(k) ~ (N(0,1) xiN(0,1)), keK

2. Shape noise by spectrum S of phenomenon

Xo(E) = S(k)Nw(k)

3. Band limited evaluation by fast Fourier transform for each dimension

Xo@ = Y Ro(®)e2™F T ¢ (s, d)
keK



Simulation of Periodic Random Fields

e Typical realization procedure of X : Q2 — C(s, d)

1. Realize Gaussian noise on s-dimensional regular grid K

No(k) ~ (N(0,1) xiN(0,1)), keK

2. Shape noise by spectrum S of phenomenon

Xo(E) = S(k)Nw(k)

3. Band limited evaluation by fast Fourier transform for each dimension
— = — T =
Xo(@) = Y Xu(k)e?™ T O(s,d)
keK
e Standard tensor product approach is exponential in s = dimz = dim k
= Curse of dimension



Curse of Dimension from Regular Grids

e Lattices of rank s with N = n® points from tensor product approach
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e O (n°logn) for s fast Fourier transforms




Curse of Dimension

e Theorem (Bakhvalov): Let C, denote the set of functions on [0, 1)® with r continu-
ous, bounded derivates, i.e.

0" f(x)
< M for f € C}
0T - x| = I € Cu
forall a1,...,as, suchthat 3°°_; o; = r. Then there exists a function f € C%, such

that the error of approximating the integral of f using any N point quadrature rule with
weights w; and function values f(x;) is
N-1

Jio e F @ = 3 wif (o)

i=0
where the constant £k > O depends on M and r.

>k-N"s




Curse of Discontinuities

e Consider

1 ifxz< X*
f(x)_{o if 2 > X*

with z; = % and z; = X*. Then

17?,1

f(z)dx — — Z fai)| ~

1
o O (N_E) error for s dimensions
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Monte Carlo Integration

e Principle: Construct random variable with desired functional as expectation

e Numerical integration by

-

e Simple, independent of dimension and smoothness, only f € L2

1 N-1

30(f) | ) o
/fsf(“”)dm_ﬁgof( )|< }>No.997 x; ~ U

e Problems
— Noise, slow convergence, difficult parallelization and reproducability
— No real random numbers

e Computational complexity
2
1 N-1

fref @z = 3 70

e Increase efficiency, not only variance reduction !!!
1
tg-o2(f)

N -tg-0%(f) =N -tg-E
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Error Control
e Unbiased estimator Y
EY = " f(x)dx
e Bias of estimator Y
By :=EY — ]Sf(az)da:

e Consistent estimator Y

N-—1
Prob ( lim 1 Z yz—/sf(a:)d:c> =1

N—oco N

e Error estimate of the estimate

1 V=1 —1
( 2 I >) | X N7 -
.:O

— adaptive sampling

1 (N-1 2]
(£ 10)




Correlated Sampling: Separation of the Main Part

e Variance reduction by approximation, method of control variables

e Search g with

If —glloo <7 €RT

e Then
/Is flx)de = \/Isg(@dw/_l_\/p f(a:-): g(aj>dxj

analytical
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e Then
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anal?tical
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Correlated Sampling: Separation of the Main Part

e Variance reduction by approximation, method of control variables

e Search g with

If —glloo <7 €RT

e Then
|, f@ada

J 9@zt [ @) —g(a)da

analytical

1 N-1

~ [ g@de+ = S (FC ) —g( )
12 N =0
Note: The independent evaluation would destroy the advantages of the method.

e Variance of Monte Carlo part
(f-9) < [ 1f(@) - 9(@)Pde < 73

e Lower bound O (N_g_%) for f € C, ([0, 1)%) obtained by Newton-Cotes methods
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The Method of Dependent Tests

e Principle: Construct random field with desired function as expectation

e Method of dependent tests (parametric Monte Carlo integration)
() = [ f@yde
1 N-1
N =0
for integro-approximation problems

e Computational complexity

1 N-1

N -tg-E /]sf(x’y)dx_ﬁ Z f( 7y)
1=0

L2

e Note: One single set ( )7{\;—01 C I® of i.i.d. random samples
= exploit induced grid structure

e Examples
— accumulation buffer
— multilevel method of dependent tests



Hierarchical Function Representation

e Use multilevel function representation [Heinrich 1998]

m
Pmg = Pog+ > _[P,— P_1lg
=i

for an arbitrary sequence (F}); 5 of interpolation operators

Jo- 1=y (Pog)(y)
e Y
_|_
) ([P — Polg) (v)
)\ClJ. No(y) —
_|_
. (Psg) ()
z3 Na(w) (P -Plp) ) e
a2 HON LY
_|_
)\(3), /\S(y)
a2 N w) ([P: — Polg) ()
+>\g' /\g(y) ; 1 Y

_|_)\§. /\3 (?J)
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Multilevel Method of Dependent Tests

e Linear Lagrange interpolation of g;. := g(yr) = (Pmg)(yg) In yi, = 2%

e Method of dependent tests

—1

1 : 2Mm 41 I 2¢ — 1
= — with =N - LD
e Compute approximation g; ~ g;
— boundary gg = go := (5 and gom = gom =
— refinement
_ 9p.om—(1-1) + g(k+1)2m—(l—l) )\l
g(2k+1)2m—l — > + \,]?/
Predictor Update
-  pom—0-1) T G 1)om—(-1)
~ 9(2k+1)2m-t T >
_|_
" _ 2

A&




Implementation

e In-place reconstruction

l
G(2k—|—1)2m4
l
G(2k)2m—l ol
(2k+2)2m
Al
./g\ksz(lfl) 9(2k+1)2m-1
g(k+1)277L—(l—1)
k2m-(D (k+ 1)2m=¢-D 2k2m-! (2k + 2)2m-!
(2k + 1)2m!

Coarser level — 1 Finer levell



Efficiency Issues

e Individual functionals
— same high variance
— same sampling rate, even if correlated
— converged samples



Efficiency Issues
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Efficiency Issues

e Individual functionals
— same high variance
— same sampling rate, even if correlated
— converged samples

e One function
— small detail contribution if correlated

- fC L,y m-1) + fC ¥y )
[ (2k)2 (2k+2)2
)\k — ﬁl ; (f( 73/(2]{;_|_1)2m—l) — > )

— adapt sampling rate NV; to support size
= reduced computational cost by exploiting correlation

e Localization heuristics
— range check
— predictor-corrector difference
— relative error

e With lifting scheme on arbitrary topology and boundaries



Numerical Results
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Importance Sampling

e Integral transformation by introducing a probability density p

_ p(z) [ f(y) _1E ) .
/IS f(x)dz = /IS f(l’)mdiﬁ — Jrs @dP(y) ~N = p(—) Y ~ P

e Variance
2( 2
(5) = e~ (o)

e Often f(z) = g(z)p(x)

1 N-1

/Isf(w)dajz/Isg(x>p($)da::/189(y)dP(y) ~ Z;O gl ) yye~p



Importance Sampling

e Integral transformation by introducing a probability density p

N-1
K)o [ D apiy m LSO

e p(y) N = p S

| f@de= [ @2

e Variance

(1) = [ 2D ([ s

e Often f(z) = g(z)p(x)

1N1

/IS f(x)dx = /IS g(x)p(x)dxr = /IS g(y)dP(y) ~ Z g( ) Yi ~ P

e Often separating the main part is more efficient than importance sampling
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e Replication heuristic
M-1
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— mappings R;(zx) : I° — I° so that

M-1 M—1
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Replication: Independent and Dependent Sampling

e Replication heuristic
M-1
(wj’ Rj)jzo
— weight functions w;(z) : I° — R, and
— mappings R;(zx) : I° — I° so that

M-1 M—1
/IS f(z)dr = /[S j;o w;(z) f(Rj(x))dx = j;o /Is w;(z) f(R;(x))dx

e Either independent integral estimation

M-1 4 Nj—1

M—-1
X o @i X5 5w O ),

j=0 "7 1=

or dependent, i.e. correlated sampling

1 N—-1M-1

M-1
[.3 wi@fRi@)de - Y3 wiC )R,
=0

N =0 i=0



Replication Heuristics: Multiple importance sampling

e Simple importance sampling can cause infinite variance

e For aset of techniques p;, i.e. R; = Pj_l, the weights are

Heuristic

Independent sampling

dependent sampling

Power (3 € RT)

Balance (8 = 1)

Uniform (G = 0)

NIp? () .
. - IR :
. N;
wjl@) = S ]ifkpk(l')
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pi(x) Syl g Ny

p) () 1

1
St o ()

w;(z) =

wi(%) = 33,02




Replication Heuristics: Multiple importance sampling

e Simple importance sampling can cause infinite variance

e For aset of techniques p;, i.e. R; = Pj_l, the weights are

Heuristic

Independent sampling

dependent sampling

Power (3 € RT)

Balance (8 = 1)

Uniform (G = 0)

NIp? () .
. - IR :
. N;
wjl@) = S ]ifkpk(l')
HEIRES )

pi(x) Syl g Ny

p) () 1

1
St o ()

w;(z) =

wi(%) = 33,02

e Problem of insufficient techniques
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K K Np—1
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k=1""F

k=1
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Stratification

e Partition of integration domain I° = U, A,

e Monte Carlo integration on each of the d|5]0|nt strata Ay

K K >\S A Nk 1
fi@ae= 3 [ s@ars Y TN A
[ . k=1
e Variance reduction for standard choice N, = A\s(Ay)N
ANPWED L L(C)
> (100 = s f@e) < 7

= at least as good as uniform random sampling

o \s(A4y) = 4 yields
1 N-1

frf@den 5 3 FC )

— Lloyd-relaxation
— Jittered sampling



Stratification by Lloyd-Relaxation

e Algorithm (similar to vector quantization)
— Take N random initial points
— Loop: Move each point into the center of gravity of its Voronoi-cell

e Periodic boundary conditions
+ Fast convergence to regular patterns

= Small number of relaxation steps yields blue-noise-samples
- Expensive iteration step

- No incremental sampling
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Stratification by Lloyd-Relaxation

e Iteration 20



Stratification: Jittered Sampling

e Division of each axis into N; intervals for N = H§=1 N;
|

e Increased efficiency by increased uniformity of distribution

e Problem: N must be factorized
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Latin Hypercube Sampling ( /NV-Rooks Sampling)

e Using s uniform random permutations a%) of size N yields

(P +e D)+
_ CRE N

where a](\,l) can be chosen as identity
‘ |

e Cannot be much worse than uniform random sampling

N
o?(fLps) <

S 102(f|v|c>




Replication Heuristics: Stratification

e Heuristic with
— weights w; = A\s(4,), and
— mappings R; : I° — A;
e Independent sampling for N; = As(A;)N

M—1 N'l

[ f@drm Y Z As(A) F(By

7=0 "7 1=
e Dependent sampling

1N1M1

frf @z~ G X3 AsAF(RiC)

1=0 j=

DES

1 M-
N

7=0



Replication Heuristics: Regularization

e Antithetic variables
[ 1@ae = [ L@ + 10— 0~ 1Y () +ra- )
I I2 2 2N ‘=
— sample points doubled and symmetrized
— more efficient if variance reduced to less than half of original variance
— good for monotonic problems

— effect killed by independent sampling !



Replication Heuristics: Regularization

e Antithetic variables
[ 1@ae = [ L@ + 10— 0~ 1Y () +ra- )
I I2 2 2N ‘=
— sample points doubled and symmetrized
— more efficient if variance reduced to less than half of original variance
— good for monotonic problems

— effect killed by independent sampling !

e Combining stratification

fstrat(z) = % (f (g) T (1 - g))

and antithetic variables
1 N=l 1

/Ifstrat, anti(z)dz ~ AN Z (f <5) + f (1 — E) + f (%_I_E) + f (5 —5))

=0



SYelljuilgle

e Instead of
1 N-1

Jis Jpoa FC@ )~ 5 37 £C )

computational complexity can be improved by

1 N—-1M-1

o J F@wdyde ~ == 3" 3 FC )

i=0 ;=0
e Low pass filtering of problematic dimensions of the integrand
— e.g. splitting for shadow rays



Replication Heuristics: Dependent Splitting

e Splitting considered as a replication heuristic restricted to selected dimensions

M-1
/I'Sl /132 f(:vyy)dyd:c — /181 /152 Z w](x,y)f(ij](g;’y))dydx

7=0
1 N-1M-1

~ XY wi, C R, ))dyds

i=0 j=0
e Realize splitting much more efficiently by e.qg.
— stratification heuristic (independent sampling)
— randomized quadratures (dependent sampling)
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e Efficiency and time complexity
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Summary

e Simulation of random variables and fields
e Monte Carlo integration

e Method of dependent tests

e Efficiency and time complexity

e Dependent sampling

e Replication

= Use as few random numbers as possible



Beyond Monte Carlo

e Day 1. Monte Carlo

e Day 3: Quasi-Monte Carlo integration
e Day 4: Monte Carlo extensions of quasi-Monte Carlo

e Day 5: Applications to computer graphics



Day 2: Quasi-Monte Carlo Points

e Discrepancy

e Deterministic low discrepancy
— Halton and Hammersley points
— Scrambling
— (t, m, s)-nets and (¢, s)-sequences
— Digital constructions
— Good lattice points



Discrepancy

e Definition: The discrepancy

1 N-1
D(Py, A) :=sup [As(A) — — Y Xa(z;)
AeA N =10
IS a measure of the uniform distribution of a given point set Py = {zqg,...,zny_1}

with respect to non-empty families A of Lebesgue-measurable subsets of I°. X 4 Is
the characteristic function of the set A.
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Discrepancy

e Definition: The discrepancy

N-1
1
D(Py, A) :=sup [As(A) — — Y Xa(z;)
AeA N =10
IS a measure of the uniform distribution of a given point set Py = {zqg,...,zny_1}

with respect to non-empty families A of Lebesgue-measurable subsets of I°. X 4 Is
the characteristic function of the set A.

e D(Py, A) ~ worst case integration error
e (Star-) discrepancy
S
D*(Py) := D | Pn,{ A|JA= [] [0,qa;) C I’
J=1
e Extreme discrepancy
S
D(PN) = D | Py, A|A = H [a],b]) C I°
J=1

e The (Star-) discrepancy and extreme discrepancy are anisotropic measures



Discrepancy Bounds

e Case s = 1: Discrepancy is size of largest gap

1
D*(P >
(N)_QN
1
D(P > —
(N)_N

e General case

s—1
log 2 N

N

D*(PN) > Bs
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Discrepancy Bounds

e Case s = 1: Discrepancy is size of largest gap

1
D*(P P ——
(Py) > N
1
D(P - —
(Py) > =
e General case
s—1
log 2 N

D*(PN) > Bs

e Discrepancy of random points

log log N
D*(P]r\:;\ndom)€o< glog )

nY

e Discrepancy of regular grids

D*(PN) c O (\S/]-N>

— Includes points taken from space filling curves like e.g. the Hilbert curve
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Uniform and Completely Uniform Distribution

e By the theory of uniform distribution
(x;) is uniformly distributed in I*
S limy_. D(Py) =0
S limy_ oo D*(Py) =0

e Definition: A sequence (z;) of numbers in I is completely uniformly distributed
if for every s € IN the sequence of points (zn, €41, - ., Tp4s—1) IS uniformly dis-
tributed in 7° for n € INg.

e Formalization of independence
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Quasi-Monte Carlo Point Sets

e Low discrepancy means

log® N
N

D*(PN) e O (

e Low discrepancy sequences cannot be completely uniformly distributed

e Quasi-Monte Carlo points means
— low discrepancy and
— deterministic points

= Discrete density approximation of uniform distribution &/
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Halton Sequence and Hammersley Points

e Radical inverse (van der Corput sequence) in base b

i= Y aj(DY = (i) == Y a;(@)p I

Note: The radical inverses are not completely uniform distributed !!!

e Halton sequence x; (= (CDbl(i), e q’bs(’i)) where b; is the i-th prime number

D*(P Halton)<i_|_ 1 H (

—1 - gN—I—b —2|—1>

J

e Hammersley point set z; := (%,dDbl(i), ooy Py 1(73)>

1
EIMINEIS[E 1 g
D*(Py 7)< H (




Algorithm: Radical Inversion

double Radicallnverse(const int Base, int 1)

{

double Digit, Radical, Inverse;

Digit = Radical = 1.0 / (double) Base;
Inverse = 0.0;

while(i)

{
Inverse += Digit * (double) (i % Base);
Digit *= Radical,
| /= Base;

return Inverse;



Algorithm: Incremental Radical Inversion

double NextRadicallnverse(const double Radical, double Inverse)
// Radical = 1.0 / Base

{
const double AlmostOne = 1.0 - 1le-10;

double Nextinverse, Digitl, Digit2;
Nextinverse = Inverse + Radical;

if(Nextinverse < AlmostOne)
return Nextinverse;

else

{
Digitl = Radical;
Digit2 = Radical * Radical;

while(Inverse + Digit2 >= AlmostOne)

{
Digitl = Digit2;
Digit2 *= Radical,
}

return Inverse + (Digitl - 1.0) + Digit2;
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Other Discrepancies

e Isotropic discrepancy J( Py )
— A is family of all convex subsets of I°
— by
D*(Py) < D(Py) < 2°D*(Py)
D(Py) < J(Py)< 4sD(Py)Y/s
x upper bound
J(Py) < 4sD(Py)Y/* < 4s(2°D*(Py)'/® = 8sD*(Py)'/*

* lower bound

J(Py) > D(Py) > D*(Py)

e Triangle discrepancy

e Edge discrepancy



Computing Discrepancies

e [ >-norm based discrepancy
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Computing Discrepancies

e [ >-norm based discrepancy

D5(Py) =

/ /\(A(az))_lex () Qda:
\ e\ W o A

where A(z) = 15_[0, 2())
e Can be efficiently computed in contrast to L~o-norm based discrepancies

e Numerical example: Triangular discrepancy

D(Py,T) < J(Py) < 16y/D*(Py)

\ 10000 random triangles | 100000 random triangles | theoretical bound
4 0.539712 0.591708 16.971

16 0.18326 0.230355 9.381

64 0.0660696 0.0777368 5.099

256 | 0.032454 0.0364673 2.739

1024 | 0.0118695 0.0178952 1.458

4096 || 0.00521621 0.00715305 0.771




Correlation Problems of Projections

e Dimensions 7 and 8 of the Halton sequence




Scrambling Permutations by Faure

e Scrambled radical inverse

@)

@,

i=Y a;() — > opa;(@))b I

=0

=0

using permutations o, by Faure

02
o3
o4
o5
ofs
o7

g8

(0,1)

(0,1,2)

(0,2,1,3)
(0,3,2,1,4)
(0,2,4,1,3,5)
(0,2,5,3,1,4,6)
(0,4,2,6,1,5,3,7)

e Construction rule

— bis even: Take 2(7b and append 20b + 1

— bis odd: Take op_1, Increment each value > b

1 and insert =1

L in the middle



Scrambled Halton Sequence and Hammersley Points

e Scrambled Halton sequence

zi 1= Py, (5, 03,), - -, Py, (3, 0,))

e Scrambled Hammersley point set

T; .= (N? (Dbl (7'7 O-bl)a sy Cbbs_l(’L, Jbs_l))



Scrambled Halton Sequence and Hammersley Points

e Scrambled Halton sequence

zi 1= Py, (5, 03,), - -, Py, (3, 0,))

e Scrambled Hammersley point set

T; .= (N? (Dbl (7'7 O-bl)a sy Cbbs_l(’L, Jbs_l))

e Improvement by scrambling (scrambled Halton sequence dimensions 7 and 8)




(t, m, s)-Nets in Base b
e Elementary interval

aj aj —|— 1

S

b1 |

j=1

> C I° forintegers i; > Oand 0 < a; < bli

e Consequently its volume is

() = ﬁ 1 1
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b!=™ contains exactly b points.



(t, m, s)-Nets in Base b
e Elementary interval

S [a,] aj—l—l

| D— H blj’ blj

> C I° forintegers i; > Oand 0 < a; < bli
j=1

e Consequently its volume is

() = ﬁ 1 1

e Definition: For two integers 0 < t < m, a finite point set of ' points in s dimensions
is called a (¢, m, s)-net in base b, if every elementary interval of volume \;(E) =
b!=™ contains exactly b points.

e For (t,m, s)-nets in base b we have

s—2
D*(Py) < B(s, b)bt +0 (btlog ~ N)

— t Is the quality parameter



(t, m, s)-Nets in Base b
e Elementary interval

S [a,] aj—l—l

| D— H blj’ blj

> C I° for integers l; >0 and 0 < a; < bl
J=1

e Consequently its volume is

() = ﬁ 1 1

e Definition: For two integers 0 < t < m, a finite point set of ' points in s dimensions
is called a (¢, m, s)-net in base b, if every elementary interval of volume \;(E) =
b!=™ contains exactly b points.

e For (t,m, s)-nets in base b we have

s—2
D*(Py) < B(s, b)bt +0 (btlog ~ N)

— t Is the quality parameter

e Note: So far the concept applies to random and deterministic points
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e (¢, m,s)-netin base b:
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— Every elementary interval of volume 27" = < contains exactly 1 point



Structure of (0, m, 2)-Nets in Base b = 2

e (¢, m,s)-netin base b:
— Set Py of N = b™ s-dimensional points of low discrepancy
— Every elementary interval of volume b!~™ contains exactly b points

e (O,m,2)-netinbaseb =2

— Set Py of N = 2™ 2-dimensional points of low discrepancy

— Every elementary interval of volume 27 = % contains exactly 1 point

e Example: All elementary volumes of a (0, 3,2)-net in base b = 2:

— more general than stratification and Latin hypercube sampling



Example ofa (1,3,2)-Netin Base b = 2

e All elementary volumes of a (0, 3,2)-net in base b = 2:

As(E) = bt=m = 203 = L with exactly b' = 20 = 1 point
— it cannot be a (0, 3, 2)-net !



Example ofa (1,3,2)-Netin Base b = 2

e All elementary volumes of a (0, 3,2)-net in base b = 2:

As(E) = bt=m = 203 = L with exactly b' = 20 = 1 point
— it cannot be a (0, 3, 2)-net !

e All elementary volumes of a (1, 3, 2)-net in base b = 2:

As(E) = bi=m = 21=3 = 2 with exactly b* = 21 = 2 points

= itisonlya (1,3, 2)-net...



Structure of (0, 2n,2)-Netsin Base b = 2

e (¢, m,s)-netin base b:
— Set Py of N = b™ s-dimensional points of low discrepancy
— Every elementary interval of volume b!~™ contains exactly b points



Structure of (0, 2n,2)-Netsin Base b = 2

e (¢, m,s)-netin base b:
— Set Py of N = b™ s-dimensional points of low discrepancy
— Every elementary interval of volume b!~™ contains exactly b points

e (0,2n,2)-netin base b = 2

— Set Py of N = (2™)2 2-dimensional points of low discrepancy

— Every elementary interval of volume 272" = % contains exactly 1 point



Structure of (0, 2n,2)-Netsin Base b = 2

e (¢, m,s)-netin base b:

— Set Py of N = b™ s-dimensional points of low discrepancy

— Every elementary interval of volume b!~™ contains exactly b points
e (0,2n,2)-netin base b = 2

— Set Py of N = (2™)2 2-dimensional points of low discrepancy

— Every elementary interval of volume 272" = % contains exactly 1 point

l

i — L

[ [ ]
and LHS (N -rooks)

e (t,m,s)-nets: Much more general concept of stratification



(t, s)-Sequences in Base b =2

e Definition: For ¢t > 0, an infinite point sequence is called a (¢, s)-sequence in base
b, ifforall k > 0 and m > ¢, the vectors xypmy 1, . .. T (fg1)pm € 17 forma (¢, m, s)-
net.
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b, ifforall k > 0 and m > ¢, the vectors xypmy 1, . .. T (fg1)pm € 17 forma (¢, m, s)-
net.

e For (t, s)-sequence in base b we have

s—1
D*(Py) < C(s,b)bt +0 <btlog N)

e Adding the component - = - to a (¢, s)-sequence Vyields a (¢, m, s + 1)-net
N =%

e (0, s)-sequences can only exist for b > s



(t, s)-Sequences in Base b =2

e Definition: For ¢t > 0, an infinite point sequence is called a (¢, s)-sequence in base
b, ifforall k > 0 and m > ¢, the vectors xypmy 1, . .. T (fg1)pm € 17 forma (¢, m, s)-
net.

e For (t, s)-sequence in base b we have

s—1
D*(Py) < C(s,b)bt +0 <btlog N)

e Adding the component - = - to a (¢, s)-sequence Vyields a (¢, m, s + 1)-net
N =%

e (0, s)-sequences can only exist for b > s

e Examples
— Van der Corput sequences are (0, 1)-sequences in base b
— adding the component % with N = ™ yields a (0, m, 2)-net
x €.g. Hammersley point set for s = 2 and N = 2™ points
«x many applications in finance and particle transport problems
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e Fixed-point numbers with M digits in base b

[0, 1) s = {kb—M|k= 0,...,6M _ 1} c [0,1)
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Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b
[0, 1) s = {kb—M|k —=0,...,b0M— 1} c [0,1)
e Components Agj) of a pointset A = {Ag,...,Axy_1}

. M : N . :
Agj) — Z agfk) bk — O.agl)arg,]z) . ag& e [0, 1)b,M
k=1



Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b
[0, 1) s = {kb—M|k —=0,...,b0M— 1} c [0,1)
e Components A(j) of a pointset A = {Ag,...,Axy_1}
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Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b

[0, 1) s = {kb—M|k —=0,...,b0M— 1} c [0,1)
e Components A(j) of a pointset A = {Ag,...,Axy_1}
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Digital (¢, m, s)-Nets and (¢, s)-Sequences
e Fixed-point numbers with M digits in base b
[0, 1) s = {kb—M|k —=0,...,b0M— 1} c [0,1)
e Components A(j) of a pointset A = {Ag,...,Axy_1}

A,L(j) = Z a(]) p—F = 2(]1) 2(32) ,&(]]\)46 [0, 1)y s Where

o) = mﬁ”( Z c@ e )>

forl <5 <sand
—1
SNoodi bt dieZy:=1{0,...,b—1}

e Arithmetic in commutative ring (R, 4+, -) with |R| = b elements
e Bijections ?7(‘7) R—Zyand¢;: Z, — R
= If now A is a (¢, m, s)-net, it is called a digital (¢, m, s)-net

= If now A is a (¢, s)-sequence, it is called a digital (¢, s)-sequence



Deterministic Constructions of Digital Point Sets

e Generator matrix

o) = (Cg‘;

Y

M,M—1
) c RMXM
k=1,1=0
e van der Corput, Sobol’, Faure, Niederreiter, and Niederreiter-Xing
— Increased quality by decreased parameter ¢

— difficult computation of the generator matrices



Deterministic Constructions of Digital Point Sets

e Generator matrix

o) = (e,ﬁ;? c RMXM

Y

>M,M1

k=1,1=0

e van der Corput, Sobol’, Faure, Niederreiter, and Niederreiter-Xing
— Increased quality by decreased parameter ¢
— difficult computation of the generator matrices

e Fast evaluation by
— Gray codes
— vectorization
— buffering of invariants
— rings implemented as lookup tables

e \ery often

a—:gj) — C(j)c{,;-



Vectorization Example for Base b= 2

e Ring R = ({0,1},+,-) = Z5 by bit vector operations

e One component at M bits precision

d (Z) m—1
x’t:(;;w)C( Os ) where i = de(i)zk

dpy—1(%) k=0



Vectorization Example for Base b= 2

e Ring R = ({0,1},+,-) = Z5 by bit vector operations

e One component at M bits precision

1 1 do(i) m—1
xi:(—---—M)C- : where 7 = Z dk(i)Qk
2 dpr—1(%) k=0
e Basic vectorized algorithm
double x(int i)
{
forint y = 0, int K = 0; I; 1 /= 2, k++)
ifi & 1)
y "= CIK];

return (double) y / (double) (1 << (M + 1));
}



Examples Matrices for Base
e (O,m,1)-netsat N = 2™

(o o ...
OO0 -

Cy =
0 1

implements ©z =

B

2
N

O
1

0

o

b=2



Examples Matrices for Base b= 2

e (0, 1)-sequences: Bit reversal, or ¢>(i) by van der Corput

Co=1



Examples Matrices for Base b= 2

e (0, 1)-sequences: Bit reversal, or ¢>(i) by van der Corput

Co=1
e Algorithm

double Radicallnverse(unsigned int bits) // M=32 bits version

{
bits = ( bits << 16) | ( bits >>  16);
bits = ((bits & O0x00ff00ff) <<  8) | ((bits & OxffOOff00) >>  8);
bits = ((bits & O0xOf0fofof) << 4) | ((bits & OxfOfof0Of0) >>  4);
bits = ((bits & 0x33333333) << 2) | ((bits & Oxccccececce) >> 2);
bits = ((bits & 0x55555555) << 1) | ((bits & Oxaaaaaaaa) >> 1);

return (double) bits / (double) 0x100000000L;



Examples Matrices for Base b= 2

e (0, 1)-sequences: Sobol’ scrambled radical inverse
1 O O

C3 = 8 =<];:11> mod 2
0

R = OO

O
1 1
1 O
1 1

o OO



Examples Matrices for Base b= 2

e (0, 1)-sequences: Sobol’ scrambled radical inverse

1 00 --- 0O
{110 - 00| (k-1
3=1101 . 00 _<1—1> mod 2
1 11 --. 0O
e Algorithm
double SobolRadicallnverse(int i)
{
int r, v;
v = 1 << M;
for(r = O; 1; 1 >>= 1)
{
ifi & 1)
r "= v,
v = v >> 1;
}

return (double) r / (double) (1 << (M + 1));



Examples Matrices for Base b= 2

e (0O, 1)-sequences: Larcher-Pillichshammer scrambled radical inverse

(1 0 --- 0 0O)

11--- 00
Cy =

11 .- 10

\1 1 .- 1 1)



Examples Matrices for Base b= 2

e (0O, 1)-sequences: Larcher-Pillichshammer scrambled radical inverse

(1 0 --- 0 0O)
1 1 --- 00
C4 =
11 --- 1 0
\1 1 --- 1 1)
e Algorithm
double LarcherPillichshammerRadicallnverse(int i)
{
int r, v;
v =1<< M;
forr = 0; i; 1 >>= 1)
{
ifi & 1)
r "= v;

vV [ v > 1,

}
return (double) r / (double) (1 << (M + 1));



Digital (O, m, s)-Nets and (0, s)-Sequences in Base b =2

e (0O,m,2)-netsat N = 2™
— Hammersley points (worst constant)

(C1,C2)

— Larcher-Pillichshammer points (best constant)

(Cla C14)
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Digital (O, m, s)-Nets and (0, s)-Sequences in Base b =2

e (0O,m,2)-netsat N = 2™
— Hammersley points (worst constant)

(C1,C2)
— Larcher-Pillichshammer points (best constant)
(Cla 04)
e (0, 2)-sequence: Sobol’ LPy-sequence
(027 C3)
e (0,m,3)-netat N = 2" Sobol’ LPgy-net
(Cl7 CQ? C3)

e Very useful in particle transport, especially computer graphics



Software

e Numerical Recipes
— Sobol’ sequence

e http://www.mcgmc.org/Software.html
— Sobol’ sequence
— Faure sequence
— Niederreiter sequence

e http://www.multires.caltech.edu/software/libseg/index.htmi
— general package
— several sequences (Halton, Niederreiter, ...)

e http://www.dismat.oeaw.ac.at/pirs/niedxing.html
— generator matrices for the Niederreiter-Xing sequence



Good Lattice Points: Rank- 1 Lattices
e Definition: A discrete subset
L:=Py+Z°CR®

that is closed under addition and subtraction is called a lattice .
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e Rank-1 lattice
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by suitable generating vector g € IN®

e Low discrepancy constructions
— Fibonacci lattices for s = 2
— lattices with generator vector of Korobov-form § = (1,1,12,...)



Good Lattice Points: Rank- 1 Lattices
e Definition: A discrete subset
L:=Py+Z°CR®

that is closed under addition and subtraction is called a lattice .

e Rank-1 lattice

- Z—»
Ly -— 9

N
by suitable generating vector g € IN®

e Low discrepancy constructions
— Fibonacci lattices for s = 2
— lattices with generator vector of Korobov-form § = (1,1,12,...)

e No explicit construction - only tables



e One-periodic pattern L N [0, 1)

3 e 3
1 . 1°
4 . 4
5 S 5
0 . 0
3 3
1 . 1°
4 . 4
5 « . 5
0 - - * 0

e Low discrepancy

e Much better discrepancy than regular grids



Example: Fibonacci Rank- 1 Lattice

e Fibonacci numbers: F{ = F> =1, F, = F,_1+ Fjp_ofork > 2
e Fibonacci lattice by generator vector ¢ = (1, Fj._1) at N = F}, points

—

1
Ty .= Fk(la Fk—l)

— Low discrepancy



Example: Fibonacci Rank- 1 Lattice

e Fibonacci numbers: F{ = F> =1, F, = F,_1+ Fjp_ofork > 2

e Fibonacci lattice by generator vector ¢ = (1, Fj._1) at N = F}, points

T;

i
= —(1, Fp._
Fk( k—1)
— Low discrepancy

o Example: N = Fyg = 55, &; := £=(1,34)
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Example: Fibonacci Rank- 1 Lattice

e Fibonacci numbers: F{ = F> =1, F, = F,_1+ Fjp_ofork > 2

e Fibonacci lattice by generator vector ¢ = (1, Fj._1) at N = F}, points

T;

i
= —(1, Fp._
Fk( k—1)
— Low discrepancy

o Example: N = Fyg = 55, &; := £=(1,34)
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e Note: NN grows exponentially for Fibonacci lattices
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Lattice Sequences

e Rank-1 lattice

—

1
Ly, — —

N
e Hide N by choosing N = b and

T = ¢p(i) - g

g

e Similar to (¢, s)-sequences: Tpym,

.+, T(p41)pm—1 form a shifted lattice



Lattice Sequences

e Rank-1 lattice
?
N
e Hide N by choosing N = b and

T = ¢p(i) - g

—

Ly = "9

e Similar to (¢, s)-sequences: Tyym, . . . ,a?(k+1)bm_1 form a shifted lattice

e Shift A inthe kK + 1strun for N = p™
op(i + kb™) -G = ¢p(i) + dp(kd™)

= ¢p(i)- G+ op(k)b " 1g
—'A




Summary

e Quasi-Monte Carlo Points
— low discrepancy
— deterministic
— Intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)
* N0 extra programming



Summary

e Quasi-Monte Carlo Points
— low discrepancy
— deterministic
— Intrinsic stratification (Latin hypercube, symmetrized, regularized, antithetic)
* N0 extra programming

— no completely uniform distribution due to correlation



Beyond Monte Carlo

e Day 1. Monte Carlo

e Day 2: Quasi-Monte Carlo points

e Day 4: Monte Carlo extensions of quasi-Monte Carlo

e Day 5: Applications to computer graphics



Day 3: Quasi-Monte Carlo Integration

e Koksma-Hlawka inequality and variation in the sense of Hardy and Krause
e Discrete density approximation

e Error control

e Transferring Monte Carlo techniques to quasi-Monte Carlo

e Integrands of infinite variation

e Discrete Fourier transform on good lattice points



Quasi-Monte Carlo Integration

e Numerical integration by

1 N-1

frof @z =5 3 1)

with variation V' ( f) in the sense of Hardy and Krause and star-discrepancy

<V(HD*(Fy)

1 N-1
D*(Py) = _sup /SXA(x)daz N > Xa(w)
A=[T5=1[0,a;)CI* I y i—0
=MXs(A)



Quasi-Monte Carlo Integration

e Numerical integration by

1 N-1

frof @z =5 3 1)

with variation V' ( f) in the sense of Hardy and Krause and star-discrepancy

<V(HD*(Fy)

1 N-1
D*(Py) = _sup /SXA(x)daz N > Xa(w)
A=[T5=1[0,a;)CI* I y i—0
=MXs(A)

e Deterministic error bound by the Koksma-Hlawka inequality

e Independent of dimension by using quasi-Monte Carlo points
— roughly quadratically faster as compared to random sampling



Theorem: The Koksma-Hlawka Inequality

1 N-1

fi 1 @dz =5 ¥ £@)| S VHD"(Py)

e Proof for s = 1: Decompose

F@) =5~ [ fdu= 70 ~ [ X0, @)f (W

and define
o0
V(f) :=/I Q;U) du
e Note:

(2) = 1 z€[0,u) |1 z<u
X[0,u] )0 else )0 else



Theorem: The Koksma-Hlawka Inequality

1 N-1

fi 1 @dz =5 ¥ £@)| S VHD"(Py)

e Proof for s = 1: Decompose

F@) =5~ [ fdu= 70 ~ [ X0, @)f (W

and define
o0
V(f) :=/I Q;U) du
e Note:

(2) = 1 z€0,u) |1 z<u |1 u>=
XOuM = g else ~]lo else O else



1 N-1
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1 N-1

[ @ds =5 ¥ 1)

= [ - /Ix[o,u]u)f’(u)dudx—fv]jg (£ = [ xou) (@) (w)du)

1 N-1

— |f(1) —/[/IX[O,U](:U)f’(u)dud:B—f(l) + Z;O /IX[o,u](xi)f’(u)du

1 N-1

2> | X0 @D f Widu = [ [ xp0.)(@)daf (u)du

1 N-1

1 N-1

~ E:O X[0,u](%i) — /IX[O,u] (z)dz| du

< [ |f@)




1N1

[ @ds =5 ¥ 1)

= |/ r(0) - x[o,u]u)f’(u)dudx—le £ = [ X001 (@) /()
I I N i—0 I

N 1
= 1@ = [ [ Mo @ (dudz ~ Q)+ 3 [ X0 @S (wha

- Ly / X0 (@S (@Wdu = [ [ xp0u(@)de ' (w)du

N—-1
= /If’(u)[l 3 X (i) - /Ix[o,u]md:c] du
N— 1
< [rwl|y 3 X0 = [ xio,a @] du
1 N-1

< [ |f@)|du- sup | L Xjo.u (@) - | Xt (@)da




1N1

[ @ds =5 ¥ 1)

= |/ r(0) - x[o,u]u)f’(u)dudx—le £ = [ X001 (@) /()
I I N i—0 I

N 1
= 1@ = [ [ Mo @ (dudz ~ Q)+ 3 [ X0 @S (wha

- Ly / X0 (@S (@Wdu = [ [ xp0u(@)de ' (w)du

1N1

= /If’(u){ X Xou(e) - /Ix[o,u]md:c] du

N 1
/|f (u)‘ Il Z ) u](m’6) /[X[Oju](ac)d:v du
/|f (u)‘du Sup

; N-1
V(f)D*(Py)  de. 0.

VAN

IA

Z X[0.u](%i) — /IX[o,u](CB)dx




Variation in the Sense of Vitali

o Difference operator for intervals of the form A = [[?_, [a;,b;) C I®
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Variation in the Sense of Vitali

o Difference operator for intervals of the form A = [[?_, [a;,b;) C I®

1 1 '
A(f,A) = Y - Y (D) 2k=1kf(Grag + (1 —j1)ba, - ., gsas+ (1 — js)bs)

J1=0 Js=0

e Variation in the sense of Vitali

V() i=sup ¥ |A(F, A)
P Aep

where P is the set of partitions of 7° into subintervals A as above

e If f has a continuous derivative

V(S)(f):/ 8Sf(u17"'7u8) d’LL
S 8u1 o« o e aus
e Problem if f constant in only some of the variables uq, ..., us

= A(f,A)=0 =>VE(f)=0
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e Restrict variation in the sense of Vitali
V(k)(f; P1y.-. 1)
to the k-dimensional face {(u1,...,us) € [0,1]%|u; = 1for j = iq,..., 05}
e Variation in the sense of Hardy and Krause
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Variation in the Sense of Hardy and Krause

e Restrict variation in the sense of Vitali

VB (frin, ..., i)
to the k-dimensional face {(u1,...,us) € [0,1]%|u; = 1for j = iq,..., 05}

e Variation in the sense of Hardy and Krause

Vi)=Y S vI(frig, i)

k=11<i1<--<ip<s
e Definition:
f is of bounded variation in the sense of Hardy and Krause, if V' (f) is finite.

e Estimating the variation in the sense of Hardy and Krause
— use regular grid at N = n® samples
— compute difference operator A on the grid
— sum up the approximations of the single Vitali variations

— N — 0
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Variation Reduction

e Transfer Monte Carlo variance reduction techniques to quasi-Monte Carlo
— separation of the main part
— multilevel method of dependent tests
— Importance sampling
— replication heuristics (presmoothing the integrand)

e Quasi-Monte Carlo importance sampling

1 Nt f(yz) f *
[ i@y - > y [si<v @ D*(Py)

where y; ~ p by the multidimensional inversion method
— Similar to the Monte Carlo case, the variation is not changed

— For low discrepancy points P quadratically faster than random sampling
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Approximating Continuous by Discrete Measures

e Often integrands of the form f = gp
— p can be modeled using the multidimensional inversion method
— g Is hard to handle (e.g. discontinuous, expensive)

e Avoid weighting by small probabilities

S)de = | g(z)p(z)de = | g(y)dP(y)
I I I

e Approximate measure P by discrete measure

1 N-1

PN::Ni;()(Syi

modeled by vy, = P~ 1(x;) from z; ~ U

e Then
1 N—-1

IROORS IOUNOES DD



Discrepancy Bounds for Transformed Points

e Definition: The discrepancy with respect to the density  pis

1 N-1

| Xa@p@)dz — < 3 Xa(s)

(=0

D*(pa CN) .= Sup
AeJ*

where Cn = {yo,.--,YnN_1}
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Discrepancy Bounds for Transformed Points

e Definition: The discrepancy with respect to the density  pis

1 N-1
D*(p,Cx) i= sup || Xa@p(@)de — = 3 Xa(w)
where Cy = {yo,.-.,yn-1}

e Multidimensional inversion method: If p is separable, i.e. p(z) = H?zlp(j)(m(j))

D*(p,Cn) = D*(Py)

otherwise

1
s

D*(p,Cn) < c(D*(Pn)) ce RT

Discrete density approximation by elements of low discrepancy outperforms
random sampling !!!
e Generalized Koksma-Hlawka inequality

1 N-1

/Isg(af)p(w)dw -~ 2 9w < V(9)D*(p, Cn)
1=0
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Discrete Density Approximation

e Example: Particle emission (jittered sampling and Hammersley points at N = 16)

e Note: Assigning dimensions is crucial



Iscrete Density Approximation

Random Co e
Halton AR T
Hammersley ..o o000
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Infinite Variation

e Quasi-Monte Carlo is roughly quadratically faster than random sampling
e Case s =1: V(f) < oo for piecewise continuous functions
e General case: Usually infinite variation for piecewise continuous functions

e In computer graphics: Triangles and edges

0

Vi =co  oA(N=,

e Proof for the Hammersley points at N = 2!

1 N-1 L Jeven
[ f@de -~ > )| = ﬁ e
= 2N



Far Too Pessimistic Bounds by Isotropic Discrepancy

e Restrict f to convex domains C, where f|~ is of bounded variation
N-1
1

| f@dz == 3 Xo@)f(@)| € (VO +1F..., 1) J(Py)
1=0
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Far Too Pessimistic Bounds by Isotropic Discrepancy

e Restrict f to convex domains C, where f|~ is of bounded variation
N-1
1

| f@dz == 3 Xo@)f(@)| € (VO +1F..., 1) J(Py)
1=0

< (V) +If(L,...,1)])8sD*(Py)>

e Bound worse than the Monte Carlo rate for s > 2

e Numerical experiments tell a different story...
— see e.g. the experiments on the triangle discrepancy

e Justification by discrete density approximation
— using low discrepancy sequences always is better

e Which function class other than bounded variation ?
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Convergence

e Quasi-Monte Carlo integration converges for Riemann-integrable functions

. . . _s+1
e Observed rate for discontinuous functions @ (N 2s )

e Argument in "Numerical Recipes”
— Weak assumption:

The behavior of low discrepancy samples at the border of characteristic sets
IS uncorrelated.

— In fact true for jittered sampling [Mitchell]
— generalized by Szirmay-Kalos

e Argument by [MC95]
— Weak assumption:

Rate of random sampling used as upper bound for low discrepancy sampling,
l.e. it is assumed, that low discrepancy sampling deterministically (!) does not
behave worse than random sampling.

— there exist proofs for some special cases for s = 2



The Spirit of the Numerical Recipes’ Argument

Proposition: Using stratified sampling to integrate the characteristic function X 4 for
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Proposition: Using stratified sampling to integrate the characteristic function X 4 for
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— Random sample z; € v; € V}, is Bernoulli random variable with

= and X )< =
p’l, )\S(’U,L) o ( Aﬂvz) — 4
— Then
1 N—-1 1 N—-1
Z XA(332|U@ =o° Z XAﬂvz(xz)
— Z XAWUZ ;) + — Z XAﬂvZ ;) ‘|‘ Z XAﬂvz(xz)
ZEV ’LEVb ’LEVO
— 02 _|V|+ Z XAﬂv (x;) +0
ZEVb
— Z XAHUZ(CB'L)
ZEVb
l s—1 2 s+1
< V|35 =cN s N “=cN s
N2



— By the Holder inequality the error is expected to be

1 N—1 s+1 s+1
/IS X p(x)dx — = > Xa(zy)| < \/CN_ s € O(N™ 25) g.e.d.

(=0




— By the Holder inequality the error is expected to be

1 N—1 s+1 s+1
/IS XA(:c)d:I:—N > Xa(zy)| < \/CN_ s €eO(N" 25) g.e.d.
=0

e Note:

: _s+1 _1
lim N 2s = N 2

S$—00
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Error Control

e Determinism: Variance of estimate is zero !
— no cheap error estimate from samples
— no efficiency - complex analysis by information based complexity theory
— quasi-Monte Carlo integration is "biased” but "consistent”

e Adaptive sampling by using low discrepancy sequences
— convergence is rather smooth due to intrinsic stratification properties
— choose fixed distance AN of samples
— compare difference of averages all AN to a threshold
— must be below the threshold 7" times

e The points "know” where to fall

e Consider local minima for AN!
— e.g. (t,s)-sequences at AN = p™
— e.g. Hammersley in s = 2
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From Monte Carlo to Quasi-Monte Carlo Integration

e The basic algorithms transfer
— Integration
— Integro-approximation
— Separation of main part and multilevel method of dependent tests

e Faster convergence by deterministic low discrepancy sampling
— Intrinsically stratified, Latin hypercube, regularized, antithetic, ...

e The simulation of random variables becomes discrete density approximation
— no independence required due to averaging
— Importance sampling carries over
— rejection modeling impossible

e Adaptive sampling by difference comparison

e What about splitting ?
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Efficient Design of Quasi-Monte Carlo Algorithms

e Write down the integral

e Transform onto unit cube I°

e Separate the main part

e Apply (multiple) importance sampling

e Use quasi-Monte Carlo points
— sample size N
— assigning dimensions

e Use dependent splitting



Quasi-Monte Carlo Integration using Lattice Points

e Originally developed for the class E,(c) with ¢ > 0, « > 1, where

~ C — —
FE B I < m—5ys Ty o= max{LIhl).Fi € Z
-+ hg
e Error bound
N-1 .
1 1
N F(39) = [, f@dia < 2 (i1 To)o
h-g=0( mod N),h#0
8 21 29 42
) - .16 24° 37 S0
A1 19 32 A5 53
R 14 27 A0 48
1 22 3 43
J 0 29T m
4 A7 s 38 .
12 20. 33 A8 54
7 . 28 A1 49’
) 15 23’ .36 .
- 10 5 44
18 Sl 5p
5 . 26 39 A7
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Quasi-Monte Carlo Integration using Lattice Points

e Originally developed for the class E,(c) with ¢ > 0, « > 1, where

f € Ea(e) & [ <

e Error bound

1N1

N

21

f

() = [ @) <

C _
_ h
.- hg)e J

= max{1,|h;|}, heZf

2.

h-g=0( mod N),h£0
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2
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e Generalized to class of bounded variation



Curse of Dimension from Regular Grids

e Lattices of rank s with N = n® points from tensor product approach
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e O (n°logn) for s fast Fourier transforms




Fourier Transform on Rank- 1 Lattices
e Choice of wave vectors
Ky = {Eo,...,EN_l} A
such that

km € Zm :={keZ° |k’ -G=m (mod N)}



Fourier Transform on Rank- 1 Lattices

e Choice of wave vectors

Ky = {Eo,...,EN_l} A
such that

km € Zm :={keZ° |k’ -G=m (mod N)}

since then

— . — n _, n
km-xn:k%;-ﬁgz(m—l—lm]\f)ﬁ



Fourier Transform on Rank- 1 Lattices
e Choice of wave vectors
Ky = {Eo,...,EN_l} A
such that

km € Zm :={keZ° |k’ -G=m (mod N)}

since then
km nzk%'ﬁg:(m+lmN)N
e Evaluate
— = - 7 N_l = %
f(fn) — f(k)€27mk Tn — f(km)GQW’km T,



Fourier Transform on Rank- 1 Lattices
e Choice of wave vectors
Ky = {Eo,...,EN_l} A
such that

km € Zm :={keZ° |k’ -G=m (mod N)}

since then
km nzk%'ﬁg:(m+lmN)N
e Evaluate
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Fourier Transform on Rank- 1 Lattices
e Choice of wave vectors
Ky = {Eo,...,EN_l} A
such that

km € Zm :={keZ° |k’ -G=m (mod N)}

since then
km n:kgz'ﬁg: (m‘|‘lmN)N
e Evaluate
= - T N—-1 = - T
f@) = 3 FR)em Tn= 37 fkm)e? ™ Fm
EEKN m=0

— Z_ f(k'm>€27mmN

m=0
by one-dimensional Fourier transform = way to break curse of dimension !
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Determining the Wave Vectors

e Many possible choices for
km € Zm ={keZ°| k' -G=m (mod N)}
e Choose largest waves first

[kmllo = min ||&[]2.
e L

lIJHL_L’_‘

e Enumerate along
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e Quasi-Monte Carlo simpler and faster than Monte Carlo integration
e Most Monte Carlo techniques transfer
e However, no rejection sampling !

e Works fine on L2, too
— justification by discrete density approximation

e Breaks curse of dimension even for discrete Fourier transform



Summary

e Quasi-Monte Carlo simpler and faster than Monte Carlo integration
e Most Monte Carlo techniques transfer
e However, no rejection sampling !

e Works fine on L2, too
— justification by discrete density approximation

e Breaks curse of dimension even for discrete Fourier transform

« Use whenever you can write the problem as an integral



Beyond Monte Carlo

e Day 1. Monte Carlo
e Day 2: Quasi-Monte Carlo points

e Day 3: Quasi-Monte Carlo integration

e Day 5: Applications to computer graphics



Day 4. Monte Carlo Extensions of Quasi-Monte Carlo

e Random field synthesis on good lattice points
e Randomized quasi-Monte Carlo integration
e Randomized replications

e Restricted randomized replications



Periodic Random Field Synthesis on Good Lattice Points

e Applications of Periodic Random Fields f.,(Z) = f.,(Z + 2) for Z € Z5 (Period 1)
— height fields: Waves, terrain
— caustics
— turbulent wind fields



Periodic Random Field Synthesis on Good Lattice Points

e Applications of Periodic Random Fields f.,(Z) = f.,(Z + 2) for Z € Z5 (Period 1)
— height fields: Waves, terrain
— caustics
— turbulent wind fields

e Typical procedure

1. Realize Gaussian noise

Nu(k) ~ (N(0,1) x iN(0, 1))



Periodic Random Field Synthesis on Good Lattice Points

e Applications of Periodic Random Fields f.,(Z) = f.,(Z + 2) for Z € Z5 (Period 1)
— height fields: Waves, terrain
— caustics
— turbulent wind fields

e Typical procedure

1. Realize Gaussian noise

Nu(k) ~ (N(0,1) x iN(0, 1))

2. Filter noise by spectrum S of phenomenon

fu(k) = S(E)N.y(k)



Periodic Random Field Synthesis on Good Lattice Points

e Applications of Periodic Random Fields f.,(Z) = f.,(Z + 2) for Z € Z5 (Period 1)
— height fields: Waves, terrain
— caustics
— turbulent wind fields

e Typical procedure

1. Realize Gaussian noise

Nu(k) ~ (N(0,1) x iN(0, 1))

2. Filter noise by spectrum S of phenomenon

fu(k) = S(E)N.y(k)

3. Band limited evaluation by fast Fourier transform

fo@ = Y Ju(R)e2mE's

EEKN



Fourier Transform on Rank- 1 Lattices

e Choice of wave vectors Ky := {EO, e EN_l} C Z°
such that

km € Zm ={keZ° |kl -g=m (mod N)}

hence with
km n=k£-ﬁg=(m—l—lmN)N

e By one-dimensional Fourier transform evaluate

— Z e271'2' — Nz_:l e27m'
EEKN m=0

— Nz_:l e27r7,
m=0
N-1
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Application: Ocean Wave Simulation

e Ocean height field synthesis
1. Realize Gaussian noise random field & m, & m ~ N (0, 1)

2. Fourier coefficients by filtering with Philipps spectrum Py, (k)

EW(E’I’YU t) = \/Ph(ka> ((£T7m + i'ﬁi,m)eiw(km)t + <£7“7m i igiam)e_iW(km)t>

3. Height field h,, : R® — R and normals by VA, : R3 — R3
N-1 e
how(Zn,t) = Z Bw(Em,t)ezmmN
m=0
N-1 o
Vho(@n,t) = Y 27mikmhw(km,t)e?™"N

m=0

= dim ¥, = 2, but evaluation by one-dimensional fast Fourier transform



Example: Ocean Waves on Fibonacci Rank-

1 Lattices

e Fibonacci numbers: F{ = F> =1, F, = F,_1+ Fjp_ofork > 2

e Fibonacci lattice by generator vector ¢ = (1, Fj._1) at N = F}, points

— Low discrepancy

e Example: N = Fyg = 55, Zn 1= £c(1,34)

A e OASCAYN
A SRV v v v S

T s . QD

et AT e 4‘()(‘»4)‘5\‘
Cal S O
7 15°2° 0280 36041 » ‘\“
> ° 26 34°39 47°5
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e Barycentric interpolation on periodic Delauney triangulation









Breaking the Curse of Dimension
e Pointset Py = {xqg,...,zn_1}

e Monte Carlo Integration:

ol

— slow

1 N-1

fref @z = 3 7C)

3

e Quasi-Monte Carlo Integration:
1 N-1

frof @z =5 3 1G] < DUENV(S)

— NO error estimate
— heavy math for BV



Breaking the Curse of Dimension
e Pointset Py = {xqg,...,zn_1}

e Monte Carlo Integration:

ol

— slow

1 N-1

fref @z =5 3 7O < 5

< 30(f)}) ~ 0.997

e Quasi-Monte Carlo Integration:
1 N-1

frof @z =5 3 1G] < DUENV(S)

— NO error estimate
— heavy math for BV

e Combine and take the best !

e Price: A little bit of , problems of
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e Randomized replications of a QMC point set
X ={X o,..., X , q}for

such that
1. X .~ for fixed
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e Randomized replications of a QMC point set

X ={X o,..., X , q}for
such that
1. X o~ for fixed
2. X ,...,X arelow-discrepancy point sets with probability one

e Monte Carlo estimate

I nf = F(X )

with error estimate

2
a?(I nf) ~ ( f(X,)—I,f)



Randomized Quasi-Monte Carlo Integration

e Randomized replications of a QMC point set

X ={X o,..., X , q}for
such that
1. X o~ for fixed
2. X ,...,X arelow-discrepancy point sets with probability one

e Monte Carlo estimate
T off = f(X )
with error estimate
2
o () e ( f(X,)—I,f)

e Presmoothing of the integrand by correlated sampling



Randomized Replications
e Random bijections
Rw IS — IS

— In fact dependent sampling replication heuristics



Randomized Replications

e Random bijections
Rw IS — IS

— In fact dependent sampling replication heuristics

e Cranley-Patterson rotations
— originally designed for error estimation with lattice points
— very simple



Randomized Replications

e Random bijections
Rw IS — IS

— In fact dependent sampling replication heuristics

e Cranley-Patterson rotations
— originally designed for error estimation with lattice points
— very simple

e Owen-Scrambling
— designed for (t, m, s)-nets and (¢, s)-sequences in base b
— advanced
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Randomized Replications by Cranley-Patterson Rotations

e Random shifts on the torus I° applied to
xU).— 40) 4 mod 1for1 < j<s

e Originally A was a lattice of low discrepancy

e Note: Cranley-Patterson rotations work with any arbitrary point set
— still unbiased Monte Carlo scheme

— especially for (¢, s)-sequences and (t, m, s)-nets
x however discrepancy can be affected due to shifting

— example: Padded replications sampling
x pad A by low dimensional point sets, apply random shifts

x exploit problem structure, e.g. in transport problems
x cheaper point sets than quasi-Monte Carlo points in high dimensions



Randomized Replications by Owen-Scrambling

e Scramble (¢, m, s)-nets and (t, s)-sequences in base b

e Algorithm: Start with H = I° and for each axis
1. slice H into b equally sized volumes Hq, Hp, ..., Hy along the axis
2. randomly permute these volume
3. for each Hy, recursively repeat the procedure with H = Hj,
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e Algorithm gets finite by finite precision of computation, i.e. digital constructions
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Randomized Replications by Owen-Scrambling

e Scramble (¢, m, s)-nets and (t, s)-sequences in base b

e Algorithm: Start with H = I° and for each axis
1. slice H into b equally sized volumes Hq, Hp, ..., Hy along the axis
2. randomly permute these volume
3. for each Hy, recursively repeat the procedure with H = Hj,

e Algorithm gets finite by finite precision of computation, i.e. digital constructions

e Net and sequence parameters remain untouched
— contrary to random shifts by Cranley-Patterson

e Much faster convergence for N > s°

s—1
log 2 N
o222
N2

due to extinction effects by full stratification




Replication by Scrambling

e Unit square [0, 1)2
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Replication by Scrambling

e Bit3of z
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Replication by Scrambling

e All bits of x and y
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e Given a digital (¢, m, s)-net in base b with components
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Formalization of Scrambling

e Given a digital (¢, m, s)-net in base b with components
e A scrambled replicate of A is obtained by
where

e Independent random permutations

e Permutation depends on the £ — 1 leading digits of = permutation tree



Efficient Implementation of Scrambling

e Main ideas for efficient scrambling:
— keep only one path of the permutation tree in memory
— traverse permutation tree paths that way, that each permutation is used only once



Efficient Implementation of Scrambling

e Main ideas for efficient scrambling:
— keep only one path of the permutation tree in memory
— traverse permutation tree paths that way, that each permutation is used only once

e Implies reordering of the points that should be scrambled

— sorting the components
() = g 40) (7) (4) (7)
AV ={AY7, ... Ay 1}_“4](0) <A0](N 1
— in this order scramble the components

= each branch of the permutation tree is traversed at most once

— undo the sorting using the inverse permutation aj_l



Example: Scrambled (0, m,2)-NetsinBase b= 2
e N =2"points A ={Aq,...,An_1}
e The components correspond to the inverse permutations aj_l(i) =\E Agj)
— e.g. Hammersley: o5 1 (i) = 2™ - 4 and o7 1 (5) = 2™ - 5 (4)

e Random permutations on Z, are random bit flips and can be vectorized
— l.e. applying a path of permutation means XORng the bit vector of bit permutations



Example: Scrambled (0, m,2)-NetsinBase b= 2
e N =2"points A ={Aq,...,An_1}

e The components correspond to the inverse permutations aj_l(i) = N - Agj)
— e.g. Hammersley: o5 1 (i) = 2™ - 4 and o7 1 (5) = 2™ - 5 (4)

e Random permutations on Z, are random bit flips and can be vectorized
— l.e. applying a path of permutation means XORng the bit vector of bit permutations

e Scrambling the component j:

— start out with a random bit vector and save it in X (j_ )

o5 (0)
— permutation tree traversal by enumerating: = 1,...,2"m — 1
x detect were tree ramifies: Number f of leading shared digits of : — 1 and ¢
+x XORa bit vector with f leading zeros followed by a 1 filled by random bits
= change the branch and choose new random permutations =

x store result in X (j_)l :
g ©)



Implementation: Scrambled Hammersley Point Set

N =1 << m;

Digits = ;
P(0, 0) = (double) Digits / (double) 0x100000000L;

Digits2 = ;

P(0, 1) = (double) Digits2 / (double) 0x100000000L;
for(i = 1; i < N; i++)

{

Difference = (i - 1) A

for(Bits = 0O; Difference; Bits++)
Difference >>= 1;

Shift = Log - Bits;

Digits A= (0x80000000 | ) >> Shift;
P(i, 0) = (double) Digits / (double) 0x100000000L;

Digits2 A= (0x80000000 | ) >> Shift;
P((int) ((double) ), 1) = (double) Digits2

/ (double) 0x100000000L:
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e Random scrambling preserves the

° , Stratified, Latin Hypercube sample, and even more...
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Example: Instance of a Randomly Scrambled (0, 4, 2)-Net

e All instances are of low discrepancy

e Not all instances are equally good...




Another Instance of a Randomly Scrambled (0, 4, 2)-Net

e All instances are of low discrepancy

e Not all instances are equally good...




Trajectory Splitting and Dependent Sampling

e Increase efficiency by

1
~ ; fany) = [ [ f(ey)dedy



Trajectory Splitting and Dependent Sampling

e Increase efficiency by

1 N-1 | A=
N Z;o f(xzayz) ~ /]31 /182 f(CE‘,y)dZUdy ~ N— Z;O f(wiayi, )

depending on the correlation coefficient of f(&,n) and f(&,7n)



Trajectory Splitting and Dependent Sampling

e Increase efficiency by

1 N—-1 1 N—-1
N X @~ [ [, fendedy~ o 33 fa)

depending on the correlation coefficient of f(&,7n) and f(&, 1)

e EXxploit smoothness by sampling



Trajectory Splitting and Dependent Sampling

e Increase efficiency by

1 N-1

1 N-1
=X S~ [ f@ydedy ~ Y S )
N =0 [FL 2 Ns =0
depending on the correlation coefficient of f(&,7n) and f(&, 1)
e EXxploit smoothness by sampling
M 1 Nj_]' M
Zﬁ Z fj(xz,]> ~ Z/ f](x)daj
=145 i=0 j=1"1
M 1 N-1 M
= [\ Y fi@de~ Y Y 50)
I j=1 1=0 j=1

e.g. separation of the main part



Trajectory Splitting by Dependent Sampling
e Integrals invariant under Cranley-Patterson rotation by z; € I°2

R;: %2 — [52
/ d :/ : d
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Trajectory Splitting by Dependent Sampling

e Integrals invariant under Cranley-Patterson rotation by z; € I°2

R; .12 — [°2
/ = /1829(3/)@:/

y — (y+ Zj) mod 1 79 Q(Rj(y))dy

e Presmoothing of selected dimensions by

/131 /132 f(x,y)dyde = /181 /152 F(z, s

e )

Q

= e, )

N-—-1

= PN,81—|—82 — (wiayi>i:0
M-1
— Prrs, = (25) =0
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Further Randomization Technigues

e Padding quasi-Monte Carlo points for high dimensions
— by random numbers
— by Latin hypercube samples

e Jittered quasi-Monte Carlo point sets
— Latin hypercube samples, however deterministic permutation
Note: Rate of randomly permuted Latin hypercube samples does not apply !
— e.g. (0, m, 2)-net with jitter of size b= ™

e Latin supercube sampling
— biased
— unbiased if used for decorrelating padded replications sampling



Summary

e Random field synthesis on good lattice points

e Randomized quasi-Monte Carlo integration
— error estimate
N -
— almost as fast as pure quasi-Monte Carlo integration
— concept of randomized replications

e Dependent splitting



Our Research
e Monte Carlo methods

e Quasi-Monte Carlo methods (mental ray )
e Randomized quasi-Monte Carlo methods

e Quantum complexity

Visit us at

www.uni-kl.de/AG-Heinrich
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