
Programmable Graphics Hardware:
Beyond Real- Time Movie Rendering

Hosted by: Multi-Res Modeling Group

Special Lecture:
Hacking the GPU
Course CS101-3

Caltech
Department of

Computer
Science

Bill Mark
Nvidia Corporation

 & UT Austin

The latest generation of 3D PC graphics hardware (GPUs) includes
highly-programmable floating-point vertex and pixel-fragment
processors. These processors are flexible enough to support high-level
C-like programming languages.

GPU designers have added programmability to these GPUs mostly to support
procedural shading capabilities similar to those used in off-line movie
rendering. But, much of the impact of these GPUs may come from the fact
that they are the first highly parallel processors that are deployed on
every desktop and are user programmable. The stream-processing
programming model used by these GPUs can be used to efficiently support
a wide variety of algorithms, including ray tracing and various types of
physical simulation.

The speaker lead the design effort at NVIDIA for Cg, a C-like language
for GPU programming. This talk will describe the design goals of Cg,
explain some of the key design decisions in the language, and summarize
Cg’s programming model and capabilities.

Monday,
 October 21st

12:30 -2pm
Lauritsen 123

L2weight = timeval – floor(timeval);
L1weight = 1.0 – L2weight;
ocoord1 = floor(timeval)/64.0 + 1.0/128.0;
ocoord2 = ocoord1 + 1.0/64.0;
L1offset = f2tex2D(tex2, float2(ocoord1, 1.0/128.0));
L2offset = f2tex2D(tex2, float2(ocoord2, 1.0/128.0));

L2weight = timeval – floor(timeval);
L1weight = 1.0 – L2weight;
ocoord1 = floor(timeval)/64.0 + 1.0/128.0;
ocoord2 = ocoord1 + 1.0/64.0;
L1offset = f2tex2D(tex2, float2(ocoord1, 1.0/128.0));
L2offset = f2tex2D(tex2, float2(ocoord2, 1.0/128.0));

thr

