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1 Introduction

Surfaces play a central role in many three-dimensional computer graphics applications.
Objects with 
at faces are naturally represented by polyhedral meshes, while objects with
curved surfaces are typically represented by tensor-product or triangular spline patches.
We would like to be able to construct hierarchical representations of all of these types of
objects, in order to provide the opportunity for compression, multiresolution editing, and
many of the other operations that we've seen applied to images and curves.

Tensor-product surface patches are one type of surface representation that is quite easily
converted into a multiresolution form. In 1988, Forsey and Bartels described a hierarchical
framework for tensor-product surface constructions called hierarchical B-splines. Their
framework creates an over-representation of the geometry|in other words, there may be
more than one way of representing a given tensor-product surface as a hierarchical B-spline.

Alternatively, a wavelet representation for tensor-product B-spline surfaces can be con-
structed by applying either the standard or nonstandard tensor-product construction to
one-dimensional B-spline wavelets. Such a basis provides a single, unique representation
for every tensor-product surface, and it requires the same amount of storage as the original
surface control points. The wavelet basis allows us to perform on surfaces many of the same
operations as described in elsewhere in these course notes for images and curves.

Unfortunately, tensor-product constructions are limited in the kinds of shapes they can
model seamlessly. In particular, tensor products can only be used for functions parame-
terized on IR2. They are not applicable to functions de�ned on more general topological
domains, such as spheres (see Figure 1(a)) or surfaces of genus larger than one (Figure 1(b)).

In this chapter we provide a brief description for how multiresolution analysis can be
extended to arbitrary topological surfaces, and we survey a number of the applications such
a representation a�ords. More detail on these topics can be found elsewhere [1, 2, 5, 6]. To
simplify the discussion, and to make it more concrete, we restrict these notes to polyhedral
(that is, piecewise linear) surfaces. As described in Stollnitz et al. [6], the results hold more
generally for surfaces generated through recursive subdivision.

We begin in Section 2 with an overview of multiresolution analysis for polyhedra. Mul-
tiresolution analysis is fundamentally a toolkit for analyzing functions, so in Section 3 we
develop the necessary mathematical framework for treating polyhedra as functions. Sec-
tion 3.1 also summarizes the constrution of a particularly useful family of biorthogonal
surface wavelets called the k-disk wavelets. Applications of k-disk wavelets to compression,
display, and editing are then presented in Sections 5, 6, and 7, respectively.

2 Overview of multiresolution analysis for surfaces

Although the mathematics of multiresolution analysis for surfaces is somewhat involved,
the resulting algorithms are relatively simple. Before diving into the details, we give here a
brief overview of how the method can be applied to decompose the polyhedral object shown
in Figure 2(a).

Just as for images and curves, the idea behind multiresolution analysis for surfaces is
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Figure 1: Non-tensor product surfaces.
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Figure 2: Decomposition of a polyhedral surface.
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to split a high-resolution surface (in this case a polyhedral version of a bust of Spock)
into a low-resolution part and a detail part. For example, the low-resolution part of the
polyhedron in Figure 2(a) is shown in Figure 2(b). The vertex positions in (b) are computed
as weighted averages of the vertex positions in (a). Again, just as for curves, the extration
of the low resolution part is linear, so it can be expressed as multiplication by a matrix Aj .
The wavelet coe�cients representing the detail can similarly be computed by multiplying
by a matrix Bj . This process is recursively applied to the low-resolution part, until the
coarsest representation of the surface is obtained in Figure 2(c).

The so-called \analysis �lters" Aj and Bj can be inverted to produce \synthesis �lters"
Pj and Qj . Synthesis, that is, the recovery of the original model from the lowest resolution
approximation and with wavelet coe�cients, can be viewed more concretely as involving two
steps: splitting each triangular face of the low-resolution polyhedron into four subtriangles
by introducing new vertices at edge midpoints; and perturbing the resulting collection of
vertices according to the wavelet coe�cients.

The challenge in creating a multiresolution analysis for surfaces is in designing the four
analysis and synthesis �lters so that:

1. the low-resolution versions are good approximations to the original object;

2. the magnitude of a wavelet coe�cient provides a useful measure of the error introduced
when that coe�cient is set to zero; and

3. the analysis and synthesis processes have time complexities that grow linearly with
the number of vertices.

3 The mathematical framework

In the remainder of these notes, we'll assume that the reader is familiar with the basic
mathematical notions of multiresolution analysis, including the importance of a sequence of
nested function spaces V 0 � V 1 � � � �, an inner product h� j �i, and the de�nitions of scaling
functions, wavelets, birothogonality, and so on. The purpose of this section is to frame the
analysis of polyhedral surfaces in the language of multiresolution analysis.

We'll use a sequence of increasingly faced polyhedra to help us de�ne the sequence of
increasingly large spaces V j . In particular, we'll start with an arbitrary triangulated mesh
M0, that we call the bash mesh. Figure 3 shows the simplest possible base mesh, a tetra-
hedron. We create a mesh M1 by subdividing each face into four subfaces by introducing
edge midpoints. The faces of M1 can be further subdivided to produce M2, and so on.
This recursive subdivision process is illustrated in Figure 3 for the tetrahedron, but keep in
mind that the base mesh is arbitrary | it can have any topological type, and any number
of vertices.

Notice that these meshes are nested when considered as surfaces in three space, in that
all points of M j are also points of M j+1. We use these nested meshes to de�ne a sequence
of nested spaces as follows: With each mesh M j , we de�ne V j as the set of all continuous
functions that are linear on each face of M j . These spaces are nested since any function
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Figure 3: Recursive subdivision of a tetrahedron: (a) M0, (b) M1, (c) M2.

that's linear on the faces ofM j is also linear on the faces ofM j+1. Formally, each function
in V j maps points of M0 into a real number:

V j := ff jf :M0 ! IR and f linear on faces of M jg

Next we need scaling functions f�ji (x)gi that span V
j . First note that since V j contains

only piecewise linear functions, a member of V j is uniquely determined by its values at the
vertices ofM j . A natural basis therefore consists of the so-called \hat" functions: associated
with every vertex i ofM j is the unique member �ji (x) in V

j that achieves value 1 at vertex

i, and is zero at all other vertices of M j . Wavelets  ji (x) are simply basis functions for
complement spaces W j = V j+1�V j . A convenient family of wavelets is constructed in the
next section.

Armed with these de�nitions, we now turn to the analysis of polyhedral surfaces. Ob-
serve that the hat functions can be used to construct polyhedral surfaces in 3-space. Specif-
ically, a function such as

S(x) =
X

i2v(MJ)

cJi �
J
i (x); x 2M0 (1)

de�nes a polyhedron with vertex positions cJi = (xJi ; y
J
i ; z

J
i ) that is topologically equivalent

to the bash mesh M0. The set v(MJ) indexes the vertices of MJ .
Notice that the vertices of S have the connectivity ofMJ ; that is, the connectivity ofM0

recursively subdivided J times. A mesh of this type is said to have subdivision connectivity.
An example is shown in Figure 2 where the full resolution surface has the connectivity of
an octahedron recursively subdivided 5 times.

Expressing S(x) in wavelet form means writing it as

S(x) =
X

i2v(M0)

c0i�
0
i (x) +

J�1X
j=0

X
i2v(M j+1)�v(M j)

d
j
i 

j
i (x) (2)

for an appropriate choice of wavelets  ji (x). The construction of such wavelets is summa-
rized in the next section.
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3.1 k-disc wavelets

In this section we construct a biorthogonal wavelet basis for polyhedral surfaces with the
following properties:

� Analysis and synthesis can both be accomplished in linear-time.

� The wavelets are \nearly orthogonal" to the scaling functions, in the sense that their
inner products with scaling functions are close to zero. A practical implication is that
low-resolution surface approximations are close to least-squares best.

We start with lazy wavelets, which for polyhedral surfaces consist of the scaling functions
(i.e, the hat functions) in V j+1 centered on edge midpoints of M j . Although lazy wavelets
have the advantage of being very simple, they are far from orthogonal to members of V j ,
meaning that the coarse versions of a full-resolution surface are far from least-squares best.
Fortunately, lifting can be used to make them \more orthogonal", resulting in what we call
k-disk wavelets [5].

More precisely, consider a vertex i ofM j+1 located at the midpoint of an edge e of M j .
The k-disk wavelet centered at vertex i is a function of the form

 
j
i = �

j+1
i �

X
v2Nk

s
j
iv�

j
v ; (3)

where Nk denotes a set of vertices ofM
j in a neighborhood of vertex i. The neighborhoods

Nk are de�ned recursively: The neighborhood N0 for the 0-disk wavelet consists of the
endpoints of e; Nk contains the vertices of all triangles incident on Nk�1 (see Figure 2).

The coe�cients sjiv are chosen to minimize the norm of the orthogonal projection of  ji
onto V j . They are determined by solving the following system of linear equations [5]:X

v2Nk

h�ju; �
j
vi s

j
iv = h�ju; �

j+1
i i; for all u 2 Nk.

Note that the system is local to vertex i. The size of the system for 0-disk wavelets is only
2 � 2. For larger values of k the size of the system depends on the valence of the parent
vertices; in regular regions of the mesh where all vertices have valence 6, the system has
size 10� 10 for k = 1, and size 24� 24 for k = 2.

3.2 k-disk analysis

An advantage of the k-disk wavelets is the ease with which a polyhedral surface S(x) as in
Equation 1 can be converted to multiresolution form as given in Equation 2. As is usual in
wavelet analysis, this is accomplished with a �lterbank procedure that successively splits
a mesh Sj+1(x) described by vertex positions cj+1i into a low resolution part Sj(x), with

vertex positions cji and a detail part described by wavelet coe�cients dji . However, the
decomposition is particularly simple with k-disk wavelets.

Let u and v be vertices of M j , and let i be their midpoint. The wavelet  ji is therefore

centered at i. The key observation is that the wavelet coe�cient dji can be computed
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Figure 4: (a) The darkly shaded triangles form the set N0 of the midpoint of i the center
edge; the lightly shaded triangles are the additional needed to form N1, the support of the
1-disk wavelet  ji centered at i. (b) The faces on which  ji is linear. (c) The graph of  ji
.

according to

d
j
i =

1

 
j
i (i)

 
c
j+1
i �

cju + cjv
2

!
: (4)

Once all wavelet coe�cients at level j have been computed, Sj(x) can determined by sub-
tracting out their collective contribution, since

Sj(x) = Sj+1(x)�
X
i

d
j
i 

j
i (x):

The following pseudocode summarizes the k-disk �lterbank analysis process:

for j decreasing to 0 do

for all i 2 v(M j) do cji = c
j+1
i

for all i 2 v(M j+1)� v(M j) do

d
j
i =

1
 
j

i
(i)

(cj+1i �
cju+c

j
v

2 )

for all i0 2 v(M j) within the support of  ji do

c
j
i0� = d

j
i 

j
i (i

0)
end for

end for
end for

4 Conversion to multiresolution form

In Section 3 it was shown how a polyhedron S(x) parameterized on a simple base meshM0

could be decomposed onto the basis of k-disk wavelets if S(x) possessed subdivision con-
nectivity. The principal di�culty for practical application is that, in most situations, nei-
ther the simple mesh M0 nor the parameterization of the surface is known. For instance,
the bunny shown in Figure 5(a) is initially de�ned only as a collection of approximately
70,000 triangles stitched together into a complicated mesh.

The �rst step of converting an arbitrary surface into multiresolution form is therefore
to determine a simple base mesh M0 that is topologically equivalent to the given surface,
and a parametric function S(x) that maps points x 2 M0 into 3-space. An algorithm for
solving this problem was given last year by Eck et al. [2]. Their algorithm produces the
base mesh M0 for the bunny shown in Figure 5(b).
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(a) (b) (c)

Figure 5: (a) A complex mesh consisting of approximately 70,000 triangles, created using
an optical scanner and the zippering technique of Turk and Levoy [7]; (b) the base meshM0

constructed by the algorithm of Eck et al. [2]; (c) the projection of the model into V 5.

Eck et al. show not only how to construct an appropriate base mesh and parametrize
S(x) over it, but also how remesh it with subdivision connectivity so that the remeshed
surface and the original deviate by no more than a user-speci�ed tolerance. This illustrated
in Figure 5(c) for the bunny at level J = 5 of recursive subdivision. The �nal step of the
conversion to multiresolution form is the application of k-disk analysis as in Section 3.2.

5 Surface compression

In this section, k-disk wavelets are used to address two compression applications: compres-
sion of complex surfaces, and compression of texture maps de�ned on surfaces.

5.1 Polyhedral compression

The �rst application is to compress polyhedral models such as the one shown in Figure 6(a).
This particular model, consisting of 32,768 triangles, was created from range data provided
by Cyberware, Inc. Since the original data was gridded and the surface was known to
be topologically equivalent to a sphere, conversion to multiresolution form did not require
the general parameterization algorithm of Eck et al. Instead, a special-purpose procedure
was used to parameterize the model on an octahedral base mesh [4]. The surface was
then converted to multiresolution form using recursive subdivision followed by �lter-bank
analysis, as described earlier.

The wavelet coe�cients computed by the �lter-bank algorithm are coe�cients of un-
normalized basis functions, so the magnitude of a coe�cient is not a good measure of the
least-squares error that would result if that coe�cient were removed. If we multiply each
wavelet coe�cient dji at level j by 2�j , we get coe�cients for an L2 normalized basis.
Just as for images, these normalized coe�cients have magnitudes that are meaningful in a
compression algorithm.

The surface approximations shown in Figures 6(b-d) were computed by sorting the
normalized coe�cients of the 2-disk wavelets, then removing 99%, 88%, and 70% of the
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Figure 6: Various compressions of Spock.

smallest-magnitude coe�cients, respectively. Notice that, just as for images, this simple
strategy causes the approximation to re�ne more deeply in areas of high detail, while leaving
large triangles in areas of relatively low detail.

5.2 Texture map compression

Compression can also be applied to the representation of a texture map de�ned on a surface.
If the surface is parameterized on the unit square, a texture map is no di�erent from an
ordinary image, and hence can be compressed using traditional wavelet techniques such
as Haar or spline wavelets. However, if the surface is topologically more complicated,
traditional wavelets no longer su�ce, but k-disk wavelets can be used. The idea is to
treat each color component|red, green, and blue|as a scalar function de�ned on the base
mesh M0. Each of the color functions can be converted to multiresolution form using �lter-
bank analysis, and the normalized wavelet coe�cients can then be sorted by magnitude and
truncated just as in image compression.

In the example shown in Figure 7, elevation and bathymetry data obtained from the
U.S. National Geophysical Data Center were used to create a piecewise-linear coloring of
the globe. The resulting color function contains 2,097,152 triangles and 1,048,578 vertices.
The full-resolution coloring was too large to be rendered on a graphics workstation with
128 megabytes of memory, and is therefore not shown in its entirety.

The approximations shown in Figures 7(a-c) were produced by leaving out 2-disk piecewise-
linear wavelet coe�cients with magnitudes smaller than a certain threshold, resulting in
compression rates of 99.9%, 98%, and 90%, respectively.

6 Display

6.1 Continuous level-of-detail control

When viewing a complex object, it is unnecessary and ine�cient to draw a highly detailed
representation if the observer is far away from the object. Instead, we would like to use
some form of level-of-detail control|allowing information about the view to determine the
complexity of the model that is rendered. Currently, perhaps the most common approach
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Figure 7: Texture map compression of the earth.

(a) (b) (c)

Figure 8: Level-of-detail control.

to creating LOD models is to have the user craft them by hand. By contrast, the sur-
face compression technique described in Section 5 provides a mechanism for automatically

producing LOD models.
The images in Figure 8 illustrate the use of wavelet approximations for automatic level-

of-detail control in rendering. When viewing the original polyhedron from distant vantage
points, there is no need to render all 32,000 triangles. The compressed versions can be
rendered instead. For instance, the three views shown in Figure 8 were created with the
three approximations shown in Figure 6.

Switching suddenly between models with di�erent levels of detail in an animation can
produce objectionable \popping." This problem is easily solved by using continuous levels
of smoothing. In e�ect, as the viewer approaches an object, each wavelet coe�cient is
smoothly varied from zero to its correct value. Likewise, as the viewer recedes, each wavelet
coe�cient is smoothly reduced to zero. More generally, each wavelet coe�cient can be made
a continuous function of the viewing distance.

6.2 Progressive transmission

Text, images, and video are commonplace on the World Wide Web, and complex geometric
models are becoming very common as well. The ever-growing production and distribution
of these geometric objects motivates the need for e�cient transmission of models across
relatively low-bandwidth networks.

The most straightforward way to transmit a complicated polyhedron is by sending
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Figure 9: Progressive transmission: (a) the base mesh, consisting of 229 triangles; (b) the
mesh after approximately 2,000 wavelet coe�cients have been received; (c) the mesh after
approximately 10,000 wavelet coe�cients have been received. Original model courtesy of
Greg Turk and Marc Levoy.

each of the triangles of the highest-resolution representation over the network. However,
transmitting complex meshes in this way forces the user to wait until the entire model is
received before anything can be displayed. A more attractive alternative is to use a wavelet
representation for progressive transmission, as illustrated in Figure 9. First, the base mesh
is transmitted; since this mesh contains very few triangles, it is received and displayed
quickly. Next, the normalized wavelet coe�cients are transmitted in order of decreasing
magnitude. As these coe�cients are received, the renderer can update and redisplay the
model.

Certain et al. [1] have recently incorporated these ideas into a multiresolution viewer
that operates as a helper application to Netscape.

7 Multiresolution editing

Finkelstein and Salesin [3] described a method for editing curves at multiple resolutions
using a B-spline wavelet decomposition. The basic idea is that broad scale changes can be
achieved by modifying a few coarse-scale wavelet coe�cients, whereas narrow changes can
be accommodated by modifying �ne-scale coe�cients. The same ideas can be applied to
surfaces, as illustrated in Figure 10.

Figure 10(a) is the original model; Figure 10(b) shows the e�ect of changing a single
scaling function coe�cient at level-0. Because �ner-level vertices in the same region are
de�ned relative to the coarse shape, they move along with the modi�cation. However, the
geometry in areas away from the change is not a�ected. A more local change is shown in
Figure 10(c) where a pair of level-3 coe�cients have been changed in the neighborhood of
the ears.
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Figure 10: Multiresolution editing.

8 Future directions for surface wavelets

The application of multiresolution analysis to surfaces of arbitrary topology is a relatively
recent development in the graphics community. The k-disk wavelets presented and applied
here are certainly not the last word in multiresolution surface representations. The k-disk
representation described could be enhanced in several ways:

� In the methods we've described, the wavelet decomposition of a surface always retains
the topological type of the input surface. However, when the input is a relatively
simple object with many small holes, it might be desirable to decompose the input
into a \topologically simpler" surface, that is, one with lower genus or fewer boundary
curves.

� The images in Figure 8 were generated by simply incorporating the wavelet coe�cients
of greatest magnitude. A view-dependent error metric could be used to produce
images of better quality using even fewer triangles.

� Many objects encountered in practice have sharp discontinuities that should be pre-
served in coarse approximations. It may be possible to accomplish this using wavelets
with discontinuities that adapt to the shape of the model being analyzed.
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