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1 Introduction

In this chapter we will explain how wavelets can be used to solve integral equations. The example we
use is an important integral equation in graphics, the radiosity equation. The radiosity equation governs
the transport of light between surfaces under the assumption that all reflection occurs isotropically. The
resulting integral equation is linear and can be analyzed as a linear operator. Since wavelets can be used
as bases for function spaces, linear operators can be expressed in them. If these operators satisfy certain
smoothness conditions—as radiosity does—the resulting matrices are approximately sparse and can be solved
asymptotically faster if only finite precision is required of the answer.

We develop this subject by first introducing the Galerkin method which is used to solve integral equations.
Applying the method results in a linear system whose solution approximates the solution of the original
integral equation. This discussion is kept very general. In a subsequent section the realization of linear
operators in wavelet bases is discussed. There we will show why the vanishing moment property of wavelets
results in (approximately) sparse matrix systems for integral operators satisfying certain kernel estimates.
After these foundations we change gears and describe some techniques recently introduced in the radiosity
literature. A technique, known as Hierarchical Radiosity, is shown to be equivalent to the use of the Haar
basis in the context of solving integral equations. Treating this example in more detail allows us to fill
many of the mathematical definitions with geometric intuition. Finally we discuss the implementation of a
particular wavelet radiosity algorithm and the construction of an oracle function which is crucial for a linear
time algorithm.

In general we will concentrate on the arguments and intuition behind the use of wavelet methods for
integral equations and in particular their application to radiosity. Many of the implementation details will
be deliberately abstracted and they can be found by the interested reader in the references ([31, 17, 20]).

1.1 A Note on Dimensionality

The final application of the developments in this chapter will be to the problem of radiosity in 3D, i.e.,
the light transport between surfaces in 3D. Consequently all functions will be defined over 2D parameter
domains. Initially we will discuss only 1D parameter domains to simplify the exposition. The chief advantage
of this reduction in dimensionality lies in the fact that many quantities, which we have to manipulate, have
a number of subscripts or superscripts which is directly proportional to the dimensionality of the problem.
It is easy to loose sight of the essential ideas unless we limit ourselves to the 1D domain case. The 1D
domain case corresponds to what is known as flatland radiosity [21], i.e., the exchange of light between
line segments in the plane. Aside from dimensionality there is no essential difference between the integral
equations governing 3D or flatland radiosity. Where appropriate we will be explicit about the changes
necessary to go to 2D domains. In general the differences are limited to more indices to manipulate, or in
the case of a program, more array dimensions to iterate over.

2 Galerkin Methods

Galerkin methods are a class of algorithms designed to solve integral equations of a particular kind [12]. In
this section we begin with an introduction to the radiosity equation as a particular example of an integral
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Figure 1: Geometry for the transport between two surfaces. 8 denotes the angles that the vector connecting
two points on the surfaces (z and y) makes with the local surface normals.

equation which can be solved efficiently with a Galerkin method. This is followed by a detailed description
of the quantities which need to be computed when applying a Galerkin scheme to such an equation.

2.1 The Radiosity Equation

The computation of radiosity, i.e., power per unit area [%], on a given surface is a widely used technique
in computer graphics to solve for the illumination in an environment. Radiosity is governed by an integral
equation which arises from a more general integral equation known as the rendering equation [23] when
one assumes that all reflection occurs isotropically. Solving the underlying integral equation exactly is not
possible in general. Thus numerical approximations must be employed leading to algorithms which are
generally very expensive. The fundamental reason for the high cost of numerical approximations is that all
surfaces in a given scene can potentially influence all other surfaces via reflection.

Radiosity B(y) is a function defined over all surfaces M? C R? which make up a given scene. It is
governed by a Fredholm integral equation of the second kind

B(y) = B(y) + p(y) - G(z,y)B(z) dz, (1)

which describes radiosity as a sum of an emitted part (light sources) and the product of irradiance,
computed by the integral, multiplied with the local reflectance p(y), i.e., the fraction of light reemit-
ted. Irradiance accounts for radiosities originating at all other surfaces weighted by a geometry term
G(z,y) = ccosb, cosB,r 4V (z,y) consisting of the cosines made by the local surface normals with a vector
connecting two points, a normalization constant c, the distance r,, between the two points, and a visibility
function whose value is in {0,1} depending whether the line between the two surface points x and y is
obscured or unobscured respectively (see Figure 1). The points z and y are functions of some parameter.
For flatland radiosity the parameter domain is 1D with d = 1, and the normalization constant ¢ = 1/2. For
full 3D radiosity the domain is 2D, d = 2 and the normalization constant is ¢ = 7~!. In all the following
derivations d, ¢, and z and y will be defined according to their context (1D or 2D).

In the context of integral equations we refer to the function G as the kernel of the integral operator
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G(f) = [ G(z,.)f(z) dz. Using operator notation we can express the equation to be solved as
(I -—pG)B = B°.

This particular integral operator has a number of properties which will be important later on. G is singular
because the r factor in its denominator becomes zero for surfaces that touch. Nonetheless G is a bounded
operator and closed on all L? spaces [3]. We are mostly interested in its action on L2, i.e., the space which
contains all finite energy functions. Since p is strictly less than one for physically realistic environments
we also know that the spectral radius of pG is strictly less than one, insuring the convergence of various
iterative schemes. In particular we can compute, at least formally, the solution to the operator equation by
a Neumann series

(o)

B =(I - pG)™'B* = 3 \(pG)'B* = B* + (pG) B* + (p0)?B" ...,
2=0

which gives the solution as the sum of directly emitted light, light that bounced through the environment
once, twice, and so forth. While not a practical prescription for computation as such, it is nonetheless a
basis for a number of algorithms to compute the solution to such operator equations. In particular in our
case the physical system is generally so damped (small p) and the falloff is so quick (r? in 3D) that iterative
schemes need to compute only a few terms in the above series until (numerical) convergence.

The task then is to find an efficient representation of both B and pG which facilitates the computation
of terms in the Neumann series. In what follows we will assume that p is piecewise constant so that we only
have to concentrate on the realization of G. This is an often made assumption, but it is not necessary [14].
Once again we make it to simplify our exposition.

2.2 Projections

A canonical solution technique for integral equations such as the radiosity equation (1) is the weighted
residual method [12], often referred to as finite elements. Historically radiosity algorithms were derived from
power balance arguments [15, 28] and only recently [21] was the traditional mathematical framework brought
to bear on the radiosity problem. However, all previous algorithms can be analyzed in the framework of
the weighted residual method. For example, Classical Radiosity (CR) [15, 28] can be analyzed as a finite
element method using piecewise constant basis functions.

A Galerkin method is an instance of a weighted residual method in which the original operator equation
is projected into some subspace. We then seek an approximation B of B in this subspace such that the
residual

r(y) = By) — B(y) — p(y) . G(z,y)B(x) dz,

i.e., the difference between the left and right hand sides of the original integral equation with B in place of
B is orthogonal to the chosen subspace. To understand the projection of our operator G into a subspace we
first consider writing the operator with respect to a basis for the entire space.

Let {N;}icz be some basis for L?. Using this basis the radiosity function B is characterized by a set of
coefficients b; such that B(z) = >, b;N;(z). The coefficients b; can be found by projecting the function B
with respect to the dual basis { N, };cz which is defined by the property

<Ni,Nj> = /NZ(CC)N] dr = 67,]

Using this fact we can write

B(z) = ZbiNi(x) = (B,N;))N;().

k2

Since the dual basis is a basis as well—whose dual is the original (primal) basis—we can also write

B(z) = ZBij(l“) = (B, N;)N;(x).

J
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From the study of linear operators we know that a linear operator is fully specified if only we know its action
on a basis set. In our case the resulting vectors are {G(N;)},ez. These vectors, living in our space, are
subject to being described with respect to our basis as well, leading us to consider

Gij = (G(N;), Ny).

Arranging these coefficients in a tableaux we arrive at an infinite sized matrix equation which represents
the original integral operator
Vi: b =0 +p; »_ Gijb;. (2)

J

The coefficients of this system are integrals of the form

Gy = / / G, y)N; (2) Nily) de dy. (3)

These coefficients are often called couplings or interactions to remind us that they have the physical inter-
pretation of measuring how much one basis function physically interacts or couples with another across the
integral operator. Note that the well known form factors of CR arise as F;; = G;; when N; = x4, /4; and
Nj = x4, (xa(z) is the function which takes on the value 1 for x € A and 0 otherwise).

In practice we have to deal with finite sized matrices. This corresponds to ignoring all but a finite
sub-square of the infinite matrix, or said differently, the use of a finite basis. Doing this we in effect fix
some subspace V C L? spanned by the corresponding finite basis. There are many choices for V' (and its
associated basis). For example one choice is the space of functions piecewise constant over fixed intervals,
and one basis for that space is the set of “box” functions. Other examples are spaces spanned by “hat”
functions or B-splines of higher orders. It is important to remember the difference between a choice of
subspace and a choice of basis for this subspace. Once we make a choice of subspace, e.g., all functions
which are piecewise linear, we still have considerable freedom in choosing a basis for this space. In particular
we will consider wavelet bases.

When choosing a finite primal basis {N;};=1,...» and associated dual basis {Ni}izlyn,’n we need to be
careful as to the spaces specified by these. The subspace span{/N;} is not necessarily the same as the space
span{N;}. If they are the same we say that {N;} and {N;} are semi-orthogonal and in particular they are
orthogonal if N; = N;. In either of these cases we still have a Galerkin technique. The more general case
arises when we consider biorthogonal bases {N,} and {N;} in which case we have a Petrov-Galerkin method.
In what follows we will quietly ignore this distinction and collectively refer to the resulting algorithms as
Galerkin methods.

Once we have chosen finite subsets {N;};=1, ., and {Ni}i:L___,n of our basis we have in effect restricted
the integral equation to a subspace. To analyze these restrictions further we define the projection operator
for this space by

B=PyB=> (B,N)N,.
i=1
Since the span of the primal basis is not necessarily the same as the span of the dual basis, we have Py # P .
Limiting the original integral equation to this subspace we arrive at

(I — pPvGPy)B = Py B°,

which is now characterized by a finite linear system (Gij;)i j=1,...n. In this way we have reduced our task to
one of solving a finite linear system in order to find coefficients b; for a function which is an approximation
to the actual solution. The quality of this approximation depends on the approximation properties of the
space V. Generally these spaces contain piecewise polynomial functions up to some order M — 1. In this
case it is easy to see that the error in our computed answer |B — B| can be! O(h™), where h is the sidelength
of some discretization imposed on the original geometry. There are other sources of error due to imprecise
geometry or boundary conditions for example, which we will not consider here (for a careful analysis of these
see Arvo et al.[3]).

LTf the numerical techniques employed properly account for the singularity in the kernel function.
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Figure 2: Two simple environments in flatland, two parallel line segments (left), and two perpendicular
line segments (right), and the resulting matrix of couplings using piecewise constant functions. (Adapted
from [31].)

Since wavelets can be used as bases for function spaces it makes sense to consider them in the context of
a Galerkin method to solve an integral equation. In the next section we turn to a detailed study of Py GPy
and the associated coeflicients G;; in the case that the space V' is some space V; in a multiresolution analysis
and the basis set {N,};=1,..n is a wavelet basis.

3 Linear Operators in Wavelet Bases

In the previous section we showed why the object Py, GPy is central to our study. This projected version of
the integral operator G has some special properties which wavelets can exploit to yield efficient algorithms.

Consider CR which uses piecewise constant functions at some (finest) level V}, of meshing. Two examples
of the resulting matrices (Gij;)i j=1,... 32 are illustrated in Figure 2. The figure shows two flatland radiosity
scenarios. On the left is the flatland environment of two parallel line segments (upper left hand corner;
denoted E and R). The resulting matrix of (I — pG) has a block diagonal form. The diagonal blocks are
identity matrices while one of the off diagonal blocks is shown enlarged. The size of dots is proportional
to the magnitude of the coupling coefficient G;;. Similarly on the right we see the resulting matrix for an
environment with two line segments meeting in a corner, for which the domain contains the singularity.
Notice how smooth and coherent the resulting matrices are. This is due to the smoothness of the kernel
function itself. Suppose now we treat these matrices as pictures and apply a lossy wavelet compression to
them. We can expect a high compression ratio while maintaining a good representation of the matrix, i.e.,
incurring only a small error in our computed answer. This is the essence of the use of wavelet bases for
integral operators with smooth kernels (such as radiosity).

To understand the meaning of a lossy compression scheme in the context of linear algebra computations
we need to connect the wavelet transform of a picture (matrix) to a vector space basis change. Since the
Galerkin method uses projections we define projection operators for a multiresolution hierarchy. For the
space V; we define

21
Pi= (., 0ir) bis

k=0

while the wavelet spaces W; have projection operators
201
Qi=F — P = Z(M/hk)l/)zk

k=0

Armed with these we describe—in the context of linear algebra—the first version of a wavelet transform,
which is known as the standard basis.
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Figure 3: Coupling matrices for two flatland environments (see Figure 2) expressed in wavelet bases. The
top row shows the coupling matrix for two parallel line segments expressed in the Haar basis (top left) and in
the 75 (Flatlet) basis [17] (top right), which has 2 vanishing moments but remains piecewise constant at the
finest level. The bottom row shows the same bases applied to the form factor matrix for two perpendicular
lines segments. (Adapted from [31].)

3.1 Standard Basis

As we saw earlier there are alternative ways of writing some finest resolution space Vi using wavelets.
Writing Vi, =V, + ZiL:_Ol W, corresponds to writing the projection operator as Pr, = Py + ZiL:_Ol Q;. Using
this identity we have

L—1 L—1
PGP, = (Po+ ) Q6P+ > Qi)
=0 1=0

L—1 L—1 L—1
= PGP+ Y PoGQi+ Y QiGPo+ > Q:iGQu.
1=0 1=0

i= i= i,1=0

This decomposition corresponds to a particular two dimensional basis construction. Given a one dimensional
wavelet basis {¢o,%ix},i=0,...,L—1,k=0,...,2° — 1 we can build a two dimensional basis via a tensor
product construction {QNSO,@/NJZ-,,C} x {¢o,V1m}, 1,0 =0,...,L—1,k=0,...,2° =1, and m = 0,...,2" — 1.
This is often referred to as the standard realization of the integral operator [6].

The pyramid algorithms that were mentioned earlier for transforming a function of a single variable
between a basis of V;, and the bases in Vp + 252—01 W, can be applied to matrices (functions of two vari-
ables). In particular the standard decomposition corresponds to applying such a pyramid transform to all
rows (transforming the right hand side Pp) followed by a transform of all row transformed columns. This
transformation of the coefficients corresponds exactly to a change of basis as is often done with matrices
for various reasons. The remarkable property of the change to the wavelet basis is that it can be performed
in time proportional to the number of basis functions, O(n?). In general expressing a matrix of size O(n?)
with respect to another basis entails a transform of cost O(n?).
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Figure 3 shows the effects of transforming form factor matrices expressed originally in the piecewise
constant nodal basis (see Figure 2) into different wavelet bases. On the left the Haar basis was used, while
on the right the Flatlet basis with two vanishing moments [17] was used. The top row gives matrices for
the example of two parallel line segments, while the bottom row shows the case of two perpendicular line
segments. Notice how many of the coefficients are small in magnitude (small disks). As the number of
vanishing moments increases from one to two (left to right) we can observe many more entries becoming
small. This demonstrates for two particular cases how more vanishing moments lead to more (approximate)
sparsity in the matrices. In the next section we will explain why vanishing moments are so important for
the compression (sparsification) of matrices which arise from smooth integral operators.

3.2 Vanishing Moments

We begin with the definition of vanishing moments. A function ¢ is said to have M vanishing moments if
its projection against the first A/ monomials vanishes

(Y, 2"y =04i=0,...,M —1.
The Haar wavelet for example has 1 vanishing moment. Other wavelets can be constructed to have more

vanishing moments.

To see why this leads to small coefficients in general consider some function f € L%. Suppose we want to
write it with respect to a wavelet basis. The coefficients of such an expansion can be found by taking inner
products against the dual basis functions

f@) =D {F i)

We want to show that for smooth f many of the coefficients f; ; = (f, ‘Z’m> are small. If f is smooth we can
apply Taylor’s theorem to expand it about some point xo (for simplicity, let g = 0) to get

ML r(i) _ (M)

for some ¢ € [0,z]. Now consider computing f; ;. To simplify the argument we consider the inner product
necessary to compute foo, i.e., the inner product with ¢ (all others being related by translations and
scalings). Suppose that the dual basis functions have vanishing moments, then we can bound the resulting

coefficient as follows
foal = | [ F@)i(@)do
(M)
- / L) 0t (2)

1) IM/WJ )l do

|17, (4)

IN

Ml

Cuy sup ‘f

where I, is the size of the interval of support of 1. From this bound we can see that the associated coefficient
will be small whenever either I, is small or the M*" derivative of f is small. Similar arguments can be made
for functions of more than one variable, for example the kernel function of an integral operator.

This bound allows us to argue that many of the entries in a matrix system arising from an integral
operator will be very small and can be ignored, leading to a sparse matrix system. Recall that integral
operators led to linear systems whose coefficients are integrals of the kernel function against the chosen basis
functions (primal as well as dual). In the case of radiosity this led to the G;; (Equation 3). Suppose that
the basis functions for the integral operator are chosen to be wavelets and that these wavelets (both primal
and dual) have vanishing moments. If G is smooth then many of the G;; will be quite small because of the
vanishing moment property, and can be ignored without incurring too much error. Below we will make this
argument mathematically precise.
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3.3 Integral Operators and Sparsity

In a paper published in 1991 Beylkin et al.[6] showed that for a large class of integral operators the resulting
linear system, when using wavelet bases, is approximately sparse. More specifically they showed that for a
class of integral operators satisfying certain kernel estimates and any € > 0 a d(€) exists such that all but
O(nlogn) of the matrix entries will be below § and can be ignored without incurring more than an error of
€ in the computed answer.

The requirements on the kernel of the integral operator are given as estimates of “falloff away from the
diagonal”

1
K(x, < —
Kl < p=p
C
M M M
01 K| +19)' K| < )

for some M >0, and K : R x R? — R the kernel function of the integral operator in question. Note that
the kernel G of the radiosity integral operator satisfies a falloff property of this type if we replace |z — y|
with 7. Since the parameterizations which we use for our surfaces are well behaved (bounded derivative) this
distinction from the classical case does not matter. Examining the matrices in Figure 3 we can immediately
see the O(nlogn) structure. There are approximately logn bands visible, each of length approximately
equal to n. This is particularly noticeable in the case of two parallel lines and the Haar basis (upper left in
Figure 3). We will not give a proof here, but give a geometric argument for the case of radiosity later on.
The geometric argument is equivalent to the mathematical proof (for the radiosity operator), but provides
more intuition.

Beylkin et al.[6] proceeded to analyze the logn dependence in the number of non-negligible entries in the
matrix and showed that by decoupling all the scales it is possible to reduce the number of needed entries
to O(n) (for certain classes of operators). It is interesting to note that the original Hierarchical Radiosity
(HR) algorithm [20] (see below) already gave a proof of the O(n) complexity based purely on geometric
arguments using a construction which does decouple the scales in a way very close to the Beylkin et al.
argument. This so called non-standard construction is also the basis of later wavelet radiosity work [17, 31].
We will describe this construction next.

3.4 Non-Standard Basis

We saw earlier how the decomposition P;, = Py + Zf;ol Q; applied to P;,GPs, on both sides resulted in a

realization of G in the wavelet basis. The resulting sum consisted of terms involving all possible combinations
of subspaces { Py, Qi }i=o,...,r.—1 on either side of G. Said differently, the operator was expressed as a sum of
contributions between subspaces at all resolutions. To remove this coupling across levels we use a telescoping
sum argument to write

L-1
PGP, = PyGPy+ Y (Piy1GPisy — PiGP;)
=0
L-1 L-1 L—1

PGPy + Y QiGP, + > P.GQi+ Y QiGQs,
1=0 1=0 1=0

using the fact that P11 = P; + @); and rewriting each summand in turn as

Pi11GPy1 — PGP, = (P, +Q,)G(P;+Q;) — PGP,
= F0Q:+Q,GF + Q,GQ;.

The main difference to the earlier decomposition is the fact that the subspaces occurring on either side of G
in the final sums all have the same index, i.e., only spaces at the same level interact. This is referred to as
the non-standard realization, since it corresponds to a realization of the operator in a basis which requires
an over representation for the functions to which the operator is applied. The over representation occurs
because for each ¢ both P; and @Q); occur on either side of G. However, the total number of functions that
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Figure 4: Coupling matrices for two flatland environments (see Figure 2) expressed in wavelet bases using
the non-standard operator realization. The top row shows the coupling matrix for two parallel line segments
expressed in the Haar basis (top left) and in the F; basis [17] (top right). The bottom row shows the same
bases applied to the coupling matrix for two perpendicular line segments. (Adapted from [31].)

occur is still only n2, but they cannot be written as a cross product of one dimensional bases. This set of
functions, {(];0(]30, (]Nﬁi7m1/}i7]‘, @Ei,m(]&i,j; Q/Zi,mz/}i,j}a 1= 0, AN ,L — 1, and j, m = 0, ey 27' — 1, is also referred to as
the non-standard basis.

Figure 4 shows the non-standard realizations of the operators for the two flatland environments considered
earlier (Figure 2). Each level consists of three blocks. The sets of triples consist of the Q,GQ; block in the
lower left, the P;GQ; block in the upper left and the Q;GP; block in the lower right. The empty quadrant
would have corresponded to P,GP;, however this is the block that the recursion (telescoping sum) occurs
on. This last observation also suggests how to transform a matrix from the nodal basis into the non-
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Figure 5: The 2D non-standard Pyramid Algorithm is applied to coupling coefficients taken from the flatland
radiosity environment consisting of two parallel line segments. One step in the transform is shown. (Adapted
from [17].)

standard realization. Instead of performing complete pyramid transforms on each row, followed by complete
transforms on each column, the non-standard realization can be achieved by interleaving the individual
transforms. First all rows are split into high pass and low pass bands (a single level application of the two
scale relation), then all columns are subjected to a single level transform. Now recurse on the low pass/low
pass quadrant P,GP; (see Figure 5). When writing this out as a matrix suitable for matrix/vector multiplies
the matrices in Figure 4 result.

4 Wavelet Radiosity

Wavelet Radiosity (WR) was first introduced by Gortler et al.[17] and Schroder et al.[31]. Their algorithm
unifies the benefits of higher order Galerkin Radiosity (GR) [21, 22, 41, 40] and HR [20]. HR was the
first method to fully exploit a multilevel hierarchy to gain an asymptotic improvement in the efficiency of
radiosity computations. It also corresponds directly to the use of a Haar wavelet basis for radiosity.

In the next section we first give a quick review of GR to motivate the desire to extend the ideas of HR
to higher order basis functions. This latter extension was realized with the use of wavelets. Approaching
the description of the final algorithm in this way also allows us to argue the correctness of the method with
very direct geometric means.

4.1 Galerkin Radiosity

GR, first introduced by Heckbert [21, 22] aims to increase the order of basis functions used in radiosity
algorithms. In this context CR [15, 28] is seen to be a Galerkin method using piecewise constant functions.
The original goal of applying higher order Galerkin methods to radiosity was to improve the quality of
the answers computed, as well as the efficiency of the computations. In particular using higher order
basis functions allows the use of much coarser meshes than CR required while still meeting a requested
error bound. In his original work Heckbert applied these ideas in a flatland environment using piecewise
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linear basis functions. More recently Troutman and Max [40] and Zatz [41] have applied higher order basis
functions to the computation of 3D radiosity. Zatz in particular has pushed the ideas to their extreme by
leaving many surfaces unmeshed. Instead he increased the polynomial order of the basis functions so that
the radiosity even over large surfaces, such as entire walls, could be computed with high accuracy without
any subdivision.

4.2 Hierarchical Radiosity

The first use of hierarchies was made by Cohen et al.[10] who introduced a two level hierarchy known as
sub-structuring. They observed that a fine subdivision was only necessary on the receiver of a transport of
light, while a coarser subdivision was sufficient on the source. Since the roles of receivers and sources are
reversible a two level hierarchy over each geometric primitive resulted. These ideas were developed further
in a paper by Hanrahan et al.[20]. They introduced HR, which applied some arguments from the n-body
literature [2, 19, 5] to CR. In their approach a possibly very deeply nested subdivision hierarchy was imposed
on every primitive. Light transport was allowed to occur throughout these hierarchies. They showed that to
within some user selectable error tolerance a linear number of interactions amongst all possible interactions
was sufficient to compute an accurate answer. Because the algorithms up to that point always used a
quadratic number of interactions HR improved the performance of radiosity computations considerably.

4.2.1 A Note on Performance Analyses

To put these two techniques and their respective advantages into perspective we need to look at their costs.
Given k input surfaces, say polygons?, any one of the above algorithms will use some number of basis
functions n defined over the totality of input surfaces. For example in the case of CR the surfaces are
typically subdivided into many elements with each element carrying an associated constant basis function
(whose support is exactly the element itself). In this case n elements correspond to n basis functions.
Similarly for higher order Galerkin methods we will probably do some meshing into elements as well, albeit
not as fine a mesh. Each resulting element will then typically carry some number of basis functions. For
example, if we are using piecewise linear basis functions each surface (2D) element will typically have
four basis functions associated with it. For each parameter axis we need two basis functions (constant and
linear) and we have two parameter axes for a total of four combinations. In general an M — 1 order piecewise
polynomial basis will have M? basis functions defined over each (2D) element. Counting in this manner it
makes sense to talk about n basis functions in total for n/M? elements.

Once we have a set of n basis functions the Galerkin method will give rise to a linear system relating
all of these basis functions with each other resulting in a system of size O(n?) (see Equation 2). This linear
system needs to be solved to find the coefficients of all the basis functions. Using some iterative solver the
solution cost is proportional to O(n?). Our linear systems are very well behaved due to the =% falloff in
the kernel of the operator. As a result, iterative schemes typically converge within very few iterations.

GR, by going to higher order bases, manages to decrease n and thus get efficiency gains. Even though the
number of bases per element increases (M?) the number of elements necessary for a given overall accuracy
falls faster for a net gain. To see why this is, we use the fact that a Galerkin method using a piecewise
polynomial basis of order M — 1 will have an accuracy of O(h™)3. Where h gives the sidelength of the
elements in the mesh [12, 24]. To make this concrete, suppose we are willing to allow an error proportional
to 1/256. Using piecewise constant basis functions, h would have to be on the order of 1/256 to meet
our goal. Now consider piecewise linear functions. In this case h would only need to be on the order of
4/1/256 = 1/16. So even though the number of basis functions per element goes up, we still come out ahead.
In the case of flatland there are two linear basis functions per element and we go from n = 256 ton = 2- 16
bases total. In 3D radiosity where we have 2 -2 linear basis functions per element n goes from 2562 down to
(2 - 16)? basis functions overall.

We have seen that for n basis functions we have O(n?) interactions in general. It is also immediately

2To simplify our exposition we will stick to polygons, in particular quadrilaterals. However, there is no fundamental
mathematical limitation preventing us from using more general parametric surfaces such as bicubic or triangular patches, for
example.

3This assumes that the singularity in the kernel function is treated correctly. If this is not done the method will have much
worse behavior.
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clear on an intuitive level that not all interactions are equally important. HR makes this statement precise
and takes advantage of it to reduce the number of interactions, which need to be computed, to O(n). For
example, “far” interactions do not need as much subdivision as “close” interactions. The exact argument as
to why O(n) elements are enough will be given below. However, even if we can make statements about the
number of elements generated during meshing, and how they will interact, we still need to consider at least
one interaction between each pair of the original set of incoming surfaces. Consequently the work of an HR
algorithm will be O(k? + n). Even though there still is a k? dependence we will often have n >> k resulting
in significant savings. Note that in a case in which the original set of k surfaces is presented premeshed as n
elements HR will be reduced to CR. Thus it will perform no worse, but in practice often dramatically better,
than CR. We will take up the issue of the k? dependence in the last section when we consider clustering.

4.3 Algorithms

All radiosity algorithms have roughly two components for purposes of this discussion. These can be described
as setting up the equations, i.e., computing the entries of the linear system, and solving the linear system.
The latter typically invokes some iterative solution scheme, for example Jacobi or Gauss Seidel iteration [38],
or Southwell relaxation [18]. In actual implementations these two phases are often intermixed, for example
when refining a subdivision mesh (adding basis functions) during successive iterations. Nonetheless we
can distinguish these two fundamental operations in our algorithms. Since iterating, i.e., performing row
updates, or matrix/vector multiplies is conceptually straightforward we will first focus on the aspect of
setting up the equations.

The simplest version of a wavelet radiosity algorithm would compute the initial matrix of coupling
coefficients at some finest level V}, (see Figure 2), followed by the transformation of this matrix into the
non-standard form (see Figure 4). Eliminating all entries less than some threshold would leave us with a
sparse system for which O(n) solution techniques exist. The major disadvantage of this algorithm is the
cost of setting up the initial set of equations. Computing the full matrix to begin with consumes O(n?)
time. Recall that our eventual goal is an O(n) algorithm. The only way to achieve this goal is to compute
only the entries in the transformed matrix which will be larger than the allowed threshold. The difficulty is
that it is not a-priori clear where these entries are.

The HR algorithm addressed this concern in an elegant way which we now turn to. Studying this example
gives us a somewhat unusual approach to the non-standard wavelet basis, since only scaling functions appear
in the formulation of HR. The advantage of this approach is that it has a clear and provably correct way to
enumerate just those interactions which are above the threshold. In the process it provides a constructive,
geometric proof for the O(n) claims of general wavelet methods for certain integral operators. In a later
section we will relate the HR construction back to the more general theory, but first we give a detailed
exposition of HR.

4.3.1 Hierarchical Radiosity

HR considers the possible set of interactions in a recursive enumeration scheme. We want to insure that
every transport, i.e., every surface interacting with other surfaces, is accounted for once and only once.
Physically speaking we want to neither miss power, nor introduce it into the simulation multiple times. To
do this we call the following procedure for every input surface with every other input surface as a second
argument (once again we consider the problem over 1D domains)

ProjectKernel( Element i, Element j )
error = Oracle( i, j );

if ( Acceptable( error ) || RecursionLimit( i, j ) )
G;; = Quadrature( i, j );

else
if ( PreferredSubdivision( i, j ) == 1 )

ProjectKernel( LeftChild( i ), j );

ProjectKernel( RightChild( i ), j );
else

ProjectKernel( i, LeftChild( j ) );
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ProjectKernel( i, RightChild( j ) );

This procedure consists of several parts which we discuss in turn.

First we call a function Oracle, which is capable of estimating the error across a proposed interaction
between elements i and j. If this estimated error satisfies the predicate Acceptable, the required coefficient
is created by calling a quadrature routine which evaluates the integral of Equation 3. We have in effect
created an entry in the matrix system, as well as implicitly decided on a particular basis function. Even if
the error is not acceptable yet, resource limitations may require us to terminate the recursion. This predicate
is evaluated by RecursionLimit. For example, we may decide that we cannot afford to subdivide input
elements to a size smaller than some minimum. Of course the hope is that this predicate will never be the
cause of recursion termination.

If the error is too high we recurse by subdividing, i.e., by going to a finer space V,; over the partic-
ular element. Typically we will find that the benefit in terms of error reduction is not equal for the two
elements in question. For example, one element might be much larger than the other and it will be more
helpful to subdivide the larger one in order to reduce the overall error. This determination is made by
PreferredSubdivision and a recursive call is initiated on the child interactions which arise from splitting
one of the parent elements. For 2D elements there would typically be four recursive calls each, not two. The
preferred element would be split into four children (quadrants).

As mentioned earlier, the process of iterating and subdividing is not typically separated in a real imple-
mentation. For example, we could imagine that the predicate Acceptable takes into account the brightness
of the sender (brightness refinement [20]) and maybe the importance of the receiver (importance refine-
ment [37]) vis-a-vis some global error threshold e. The error threshold may itself become smaller upon
successive iterations (multigridding [20]), creating a fast but inaccurate solution first and using it as the
starting point for successive solutions with lesser error. Any of these techniques we might refer to as refine-
ment. Thus we will typically reexamine interactions created in an earlier iteration when iterating again.

In an implementation this is easily done by keeping a list of all G;; created and calling a modified version
of ProjectKernel on these before the next iteration. If none of the parameters which influence Acceptable
has changed, ProjectKernel would simply return; otherwise it would delete the interaction G;; because
it has too much error and replace it with a set of finer interactions. This would correspond to replacing
some set of basis functions (and their interactions) with a new and finer set of basis functions (and their
interactions).

From the structure of the recursion, it is clear that every transport will be accounted for once and only
once. The remaining task is to show that for a strictly positive amount of allowable error* we will create
only a linear number of interactions amongst all the (implicit in the subdivision) basis functions created.
Furthermore we need to show that the function Oracle can be implemented in an efficient way.

4.3.2 Bounding the Error

We proceed by analyzing the function ProjectKernel more closely to understand how many recursive calls
it will generate. Again in order to streamline the presentation we first analyze the case of radiosity defined
over 1D domains (flatland radiosity). When we used the name ProjectKernel we already anticipated one
meaning of the G;; coefficients which we will now use to analyze the relationship between allowed error and
number of interactions necessary.

Recall the definition of G;; (Equation 3). We may interpret the G;; as expansion coefficients of G as
follows

Gy = [ [ o M@)o dy
= ((GvN]>7Nz>
G(Cﬂ,y) ~ G(m,y) = Z GZ]N](‘T)NZ(y)

ij=1

4Imagine Acceptable always returns False. In this case the recursion would always bottom out and in fact all n bases at
the finest level of meshing, as determined by RecursionLimit would interact, resulting in n? interactions.
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In other words, computing some set of G;; is equivalent to approximating the function G(z,y) with a
projected version G(z, y).

Using the fact that the radiosity integral operator is bounded and strictly less than 1 for physically
realistic reflectances [3], the error in our computed solution B can be bound vis-a-vis the actual solution B
as

|B - B| < Cg|G -G,

where the norms are between functions, and C is some constant associated with the input (geometry,
reflectances, and right hand side), but independent of the basis functions used. Clearly given a user selectable
€ > 0 the error in the computed solution can be forced below € by making G sufficiently close to G.

So far we only have a global statement on the error. We next need to show that we can keep the global
error, in some suitable error norm, under control by making local decisions. There are many possible ways
to derive such bounds. We consider only a very simple one, not necessarily the tightest. Observe that the
difference between G and G is simply given by all the terms in the infinite expansion of G which are not
accounted for by the finite number of terms used for G. In a wavelet expansion all the coefficients in this
difference have a level number associated with them. Now consider the 1-norm of these coefficients within
each level and the sup norm accross levels. We would like to argue that the resulting norm will fall off as
we consider more and more levels. Away from the singularity this follows easily since there even the 2-norm
of the coefficients will fall off as 2-*+7/2) (n = 2 in flatland and n = 4 in 3D radiosity), with « the local
Lipschitz exponent and ¢ the level number. Note that this is sufficient even for discontiuities due to visibility
where @ = 0. Only the behavior at the singularity actually forces us to use the 1-norm. This follows from
the fact that the form factor will stay constant (o = —d), but the throughput (I-norm), i.e., area times
formfactor, will fall off exponentially with the level number at the singularity. Consequently any strategy
which considers the 1-norm within each level and stops refining, i.e., going deeper, when some threshold has
been undercut (the sup-norm estimate is satisfied) will be capable of insuring that the resulting error in the
solution is below some desirable e.

Now we already know that the simplest version (no brightness, importance, or multigridding refinements)
of the function Acceptable is a comparison of error against §.

4.3.3 Bounding the Number of Interactions

Suppose now that we stay in the framework of CR in so far that we only allow constant basis functions (as
HR does [20]) and that we simply set G = G(zo,y0) where zy and yo are the midpoints of the respective
intervals (areas) we are considering. In the language of wavelets our scaling functions are “box” functions
and the associated wavelet is the Haar function. Using the fact that

c
Gyl < .

we get, over the support of two elements I, and I, which do not intersect

G -Gl < //|G(xo,yo>—a<x,y>|da:dy
1, JI,

7\
or (_> ,

r
through an application of the mean value theorem. I denotes the length of the maximum edge of any of the
involved domains (two 1D domains in flatland, four 1D domains in 3D). The bound given above is small

whenever the ratio of sizes to distances is small. In particular it will fall as a second power (even faster in
3D) of the ratio of the largest edge length to the distance. From this follow two observations

IN

1. I always needs to be less than r to get the bound below our error threshold;

2. the involved elements should be of comparable size, since nothing is gained by making one smaller but
not the other.
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Below we will see that this is enough to argue that for every element I, there are a constant number of
elements I, which satisfy these criteria.

The bound given above is only useful when r > 0. When the two elements meet, a more careful analysis
must be applied. The difficulty arises because of the r~? nature of the radiosity kernel. In other words,
the bound given above holds everywhere so long as we exclude an arbitrarily small region around the
intersections of any of the elements. To deal with these remaining regions we need the boundedness of our
original operator. For this small region around the intersection set G =0to get

|G - G| = |G| < CIyFlyylz
(in 3D the factor I, is replaced by A,). Since the form factor Fj, ;, < 1 we can force |G — G| below any
desired threshold by making I, (A, respectively) small enough.

Taking both bounds together we can make the distance between G and its approximation arbitrarily
small by making the ratio of size to distance small or, when we are at the singularity, by simply making
the size itself small. The region over which we have to employ the second bound can be made arbitrarily
small, and with it the bound itself. For sake of our argument we allocate €/2 of our total allowed error to
the regions touching the singularity and continue to consider only the case of elements which are separated.
Their error must now be kept below €/2, for a total of the given e.

Given that we have a remaining error budget of €¢/2 we need to show that for this allowable error any
recursive call will create at most a constant number of calls to the function Quadrature. From the above
error bound we see that an interaction will be created whenever the size to distance ratio is smaller than
some threshold. How many elements can there be for which this is true? To answer this question we
interpret the size to distance ratio geometrically as a measure of angle subtended. In other words, this ratio
is proportional to the angle that one element subtends from the point of view of the other element.

On the initial call to ProjectKernel there can at most be k elements (the original input surfaces) less
than this threshold (hence the k? in the overall performance analysis). Suppose that some of those initial
input surfaces are too large, i.e., their angle subtended is above our threshold. These surfaces will result in
recursive calls. How many can there be? Since the total angle subtended above a given element is bounded
there can at most be a constant number of elements larger than some minimum on any given recursive
call. Suppose that at the next recursion level, due to subdivision, all of these elements have fallen below
the threshold. In this case they all interact with our element, i.e., this element interacts with a constant
number of other elements. Suppose instead that not all elements have fallen below the threshold due to the
subdivision. Once again, there can be at most a constant number of such “too-large” elements.

In either case each element—below the top level call to ProjectKernel—interacts at most with a constant
number of other elements. This means that the total number of interactions created due to recursive calls is
proportional to the total number of elements. The constant of proportionality is a function of the problem
definition and error requested, but not of the discretization itself.

4.3.4 Oracle

From the above arguments, we have seen that the function Oracle can be implemented by estimating the
ratio of size to distance, or in the vicinity of the singularity, simply the size itself. In the case of radiosity
with constant basis functions, measuring the ratio is particularly simple since it is given by the point to
finite area form factor, a quantity for whose computation many formulas are known (see for example [34]
or [27]). This was the oracle used in the original HR algorithm [20]. For higher order methods a simple
form factor estimate is sufficient to argue the asymptotic bounds, but does not take full advantage of the
information present. There are other, more direct methods to estimate the quantity |CA1Y — @] discussed in
the next section.

4.3.5 Higher Orders

Consider again the argument used above to show that HR constructs only a linear number of interactions.
There was nothing particular in the argument which ties it to constant basis functions. Suppose we wish
to employ a Galerkin scheme with higher order basis functions. In this case each interaction between two
elements entails a number of quadratures. For constant basis functions there was simply one coefficient G;;
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for elements i and j. We will continue to use the indexing G;;, but think of the quantity G;; as consisting
of an array of numbers describing all the possible coupling terms over the given elements due to higher order
basis functions. For example, in the case of piecewise linear basis functions we have two basis functions along
each dimension. In flatland G,; now consists of 2 - 2 couplings and in 3D G;; has 2% - 22 numbers associated
with it. If M — 1 is the order of basis functions used we will abstract M - M (flatland) and M? - M? (3D)
couplings respectively into G;.

The basic reasoning of the recursion count argument still holds. |G — G is still the quantity which needs
to be kept below some §(e), however G is not constant anymore. The form factor argument to measure
angle subtended does not take full advantage of the power of higher order basis functions. However, it is
still sufficient to argue the asymptotic bound. In practice we will of course want to take advantage of the
higher order nature of the basis functions. One way to do this is to have the function Oracle use an estimate
of the G;; to construct a polynomial and measure how well this polynomial interpolates the real kernel G
over the support of the two elements in question. This type of oracle was employed in the case of wavelet
radiosity [17, 31] and estimates the quantity |G — G| directly.

4.3.6 Iterative Solvers

As pointed out earlier there are two parts to a complete algorithm, setting up the equations, and solving
them. Above we described how to set up the equations and argued why there are O(k? + n) interactions
total for any given finite accuracy requirement. To complete the algorithm we need the iteration function.
This function corresponds to the matrix/vector multiply in an iterative solver. In HR this was referred to
as Gather, a function which moves radiosity from element j across G;; to element i, multiplying it with the
factor G;; (the form factor for constant basis functions). Once this has occurred we still need a function
referred to as PushPull in [20].

For each input surface (element) i, ProjectKernel is called with all other input surfaces (elements) j.
As pointed out above, the choice of interactions G;; actually created corresponds to an implicit choice of
basis functions. Consequently when ProjectKernel was called on, say i and jo, versus i and j, different
basis functions may have been constructed on i for those two calls. Put differently, irradiance at a surface
will be computed at different levels of the hierarchy, due to different sources. These incoming irradiances
need to be consolidated.

Consider the function PushPull as proposed in Hanrahan et al.[20]. Irradiance of a parent in the
subdivision hierarchy is added to the children on a downward pass, while on an upward pass the radiosity
at a parent is the area average of the radiosity at the children

PushPull( Element i )
if( 'Leaf( i ) )
i.children.E += i.E; //Push
ForAllChildren( i.c )
PushPull( i.c );
i.B = AreaAverage( i.children.B ); //Pull
else
i.B = i.Be + ApplyRho( i.E );

where we used the symbols B to denote radiosity, E to denote irradiance, and Be for the emitted part of
radiosity.

The summing of irradiance on the way down follows immediately from the physical meaning of irradiance.
The irradiance at a given element is the sum of all the irradiances received at the element itself and all its
ancestor elements. The area averaging on the way up follows directly from the definition of constant radiosity,
which is a density quantity per area.

How to extend this PushPull reasoning to the higher order hierarchical algorithm briefly outlined above
is not immediately clear. This is where wavelets come in since they not only generalize the notion of higher
order hierarchical basis sets, but also the attendant notions of pushing (pyramid down) and pulling (pyramid
up) throughout such a hierarchy.
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Figure 6: The F> wavelet construction. F, bases have two different wavelet functions. Both of them have
two vanishing moments (from [17]).
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Figure 7: The Ms wavelet construction whose scaling functions are the first two Legendre polynomials.
Both of the wavelet functions (lower right) have two vanishing moments (from [17]).

4.4 O(n) Sparsity

The abstract mathematical proof of the O(n) sparsity claim for certain integral operators given by Beylkin
et al.[6] is the exact analog of the constructive geometric argument we gave above for the O(n) claim of HR.
The main difference is that the abstract proof argues that all but O(n) entries in the resulting matrix system
are below the threshold, while HR argues the complement: only O(n) entries are above the threshold.

In HR we argued that for a given allowable error of € we can permit some amount of error (§) across each
link and that there would only be a linear number of such links. In fact we used scaling functions (piecewise
polynomial) as basis functions. Saying that there is an error of ¢ for one such approximation is equivalent
to saying that the associated wavelet coefficient is less than ¢ (for sufficiently smooth kernels). Recall that
the wavelet coefficient measures the difference between one level of approximation and the next finer level
(recursive splitting) of approximation.

While we used an “angle subtended” argument to limit the number of coefficients thusly created the
classical falloff property (Equation 5) is the abstract analog of this geometric statement. Recall the bound
we gave on the coefficients of ¥ for a smooth function f (Equation 4). It bounds the magnitude by interval
(area) size raised to the M'" power multiplied with the derivative. But for integral operators we have a
bound on these derivatives of the form |z —y|~?~™. In other words the coefficients are bounded by a power
of a size (interval or area) to distance (|z — y|) ratio. The same argument we used earlier in the context
of radiosity, except this time made on purely mathematical grounds with no reference to the surrounding
geometry. In this way the classical argument of Beylkin et al. generalizes to other integral operators an idea
that is perhaps more obvious in the geometrical context of graphics.

One issue remains. The abstract theory of integral operators has us use the scaling and wavelet functions
to construct the sparse linear system. WR [17] (or higher order hierarchical methods) only use the scaling
functions.

Consider again the Haar example. Suppose we are using the Haar basis for a non-standard realization
of our operator (see Figure 4 left column). If we ignore all entries in the matrix less than some threshold
we will be left with some set of entries corresponding to couplings between a mixture of scaling and wavelet
functions. In the Haar case we can transform this set of couplings into a set of couplings involving only scaling
functions by exploiting the two scale relationship. Simply replace all occurrences of 1; ; with 2-1/ Zit12j —
2~ 1/ 2¢it1,25+1- The remaining set of couplings involves only scaling functions.

The reason the Haar basis allowed us to do this simplification lies in the fact that the scaling functions
in the Haar system do not overlap. For more general wavelets there is overlap between neighboring func-
tions. Consequently the above substitution, while still possible [16], is not as straightforward. The problem
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arises with overlapping basis functions because some regions may be accounted for multiple times, in effect
introducing the same power more than once into the system. The wavelets that were used in the original
WR work [17, 31] did not suffer from this problem because they were tree wavelets. In a tree wavelet the
filter sequences do not overlap.

The Haar basis is a tree wavelet basis. When trying to extend these ideas to more vanishing moments we
have to allow more than one wavelet (and scaling) function over a given interval to keep the filter sequences
from overlapping. In essence neighboring intervals are decoupled. This is not a classical construction because
there are multiple generators of the MRA. WR used so called Flatlets, which are still piecewise constant,
but combine more than two box functions to increase the number of vanishing moments (Figure 6 shows the
shape of Flatlets with two vanishing moments). Another set of wavelets explored for WR was introduced
by Alpert [1] under the name multi-wavelets. Over each interval a set of Legendre polynomials up to some
order M — 1 is used and a wavelet hierarchy is imposed. Here too, neighboring intervals decouple giving
multi-wavelets the tree property as well (see Figure 7 for a multi-wavelet with two vanishing moments).
Details regarding these functions in the context of WR can be found in [17, 31].

Using tree wavelets and the substitution of all wavelet functions by sequences of scaling functions leads
to an obvious simplification of the code and follows naturally from the historical development. It also results
in a straightforward procedure to enumerate all “important” couplings and circumvents all issues associated
with boundaries. Instead of specializing a wavelet constructed for the real line to one usable for an interval
the multi-wavelets and Flatlets have the interval property right from the start.

There are other practical issues which are taken up in the original papers and the interested reader is
referred to them for more details ([17, 31]). For example, in some wavelet constructions only the primal
(or dual) bases have vanishing moments. Recall that the G;; (Equation 3) had both primal and dual bases
under the integral sign. If only one of these has vanishing moments, say the primal basis, it is desirable to
use a projection into the dual basis on the left hand side of the original operator, Py GPy. This was the
case in [17, 31] for the so called Flatlets. Doing this requires a basis change back to the primal basis after
each iteration of the operator. This is easily absorbed into the PushPull procedure, though.

5 Issues and Directions

In our treatment so far we have deliberately left out a number of issues arising in a real implementation for
purposes of a clear exposition of the general principles. We now turn to some of these issues as well as to a
discussion of extensions of the basic ideas.

5.1 Tree Wavelets

Both HR and WR used scaling functions which do not maintain continuity across subdivision boundaries.
While convergence of the computed answers is assured in some weighted error norm, there is nothing in the
algorithm which will guarantee continuity between adjacent elements. This has undesirable consequences
for purposes of displaying the computed answers. Discontinuities in value or even derivative lead to visually
objectionable artifacts (e.g., Mach bands).

These discontinuities arose from a desire to use tree wavelets. Recall that in classical wavelet construc-
tions with more than 1 vanishing moment the supports of neighboring scaling functions overlap. In this
way continuity between neighboring mesh elements up to some order (depending on the wavelet used) can
be assured. Two difficulties arise if one wants to use such wavelets: (A) They need to be modified at the
boundary of the original patch since overlap onto the outside of the patch is not desirable (it is not even
physically meaningful); (B) sparse representations, i.e., partially refined subdivisions, are difficult to build
with such wavelets. To appreciate the latter point consider the scaling function associated with the subdivi-
sion child of some element. If the neighboring element does not get subdivided, i.e., does not have children
itself, the former scaling function will again overlap a “niece” element which does not exist. Tree wavelets
avoid both of these issues. Since they inherently live on the interval no overlap outside the interval or over
“niece” elements, which do not exist, can occur. Furthermore every wavelet can be replaced immediately
by a linear combination of its constituent scaling functions, resulting in a much streamlined program which
only needs to deal with scaling functions. This convenience comes at a cost of higher storage. Whenever an
element is subdivided we do not just simply add a single new coefficient to the representation of the kernel,

160



Figure 8: Subdivision around a feature line (bold diagonal line). On the left a restricted quadtree subdivision
bracketing the feature line to within some grid resolution. On the right subdivision is induced immediately
along the feature line, representing it perfectly and resulting in far fewer elements.

but rather a chunk. Consider 3D radiosity and wavelets with A/ vanishing moments. In this case every G;;
actually consists of (M?)? coefficients (one for each possible combination of bases over the two elements).
For cubic bases the refinement of an existing interaction into 4 child interactions results in 3 - 256 additional
floating point coupling coefficients.

Preliminary experiments with classical wavelets for radiosity have recently been reported by Pattanaik
and Bouatouch [29]. They used Coiflets [11] as well as interpolating scaling functions [13]. However, they
ignored issues associated with the boundary of patches, the singularity, and only gave an algorithm which
does uniform refinement when the error criterion is not met (resulting in an O(n?) algorithm).

Clearly more research is needed for an algorithm which uses overlapping scaling functions of higher
regularity and properly addresses boundary and adaptive subdivision issues.

5.2 Visibility

The basic premise on which the sparsification arguments for integral operators rest is the smoothness of the
kernel function. However, in the case of radiosity the kernel function contains a non-smooth component:
the visibility function V(z,y). Clearly the kernel is still piecewise smooth so the arguments certainly hold
piecewise. Alternatively, the arguments can be approached with a notion of smoothness as defined in the
Besov space sense. However, the complexity analysis is considerably more complicated. To our knowledge
no such analysis has yet been performed. We hypothesize that the total number of coefficients will have a
component which is in some sense proportional to the “length” of the discontinuity.

In practice two basic approaches have emerged to address the discontinuities in the kernel function.
HR [20] and WR [31, 17] use regular quadtree subdivision of quadrilaterals. Thus they in effect resolve
the resulting features in the computed radiosity function by approximating them with successively smaller
rectangles (see the left side of Figure 8). Since the oracle is based on estimating how well the kernel is
approximated by a low order polynomial over the support of the two elements in question, it will automat-
ically “zoom” in on these feature boundaries. This follows trivially from the fact that the discontinuity in
the kernel is not well approximated by a low order polynomial. Another approach has been put forward by
Lischinski et al.[25]. They take the feature lines due to discontinuities in the visibility function explicitly into
account with discontinuity meshing. Instead of using regular subdivision they introduce subdivisions along
lines of discontinuities in the computed answer (see the right side of Figure 8). As a result they generate far
fewer elements and discontinuity features are resolved exactly. The disadvantage of their approach lies in
the considerably more complicated global visibility analysis necessary to find all such feature lines. Another
difficulty arises from the fact that such an approach needs wavelets over irregularly subdivided domains.
Lischinski et al.[25] stayed within the HR, i.e., constant basis function, framework. In this case the filter
coefficients for PushPull are still just simple area ratios. Piecewise polynomial triangular elements could be
accommodated as well in a straightforward extension of the use of multi-wavelets in [17]. The feasibility of
this approach was recently examined by Bouatouch and Pattanaik [7]. Classical wavelets however, have only
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recently been adapted to irregular meshes [26, 33] and they have not yet been applied to wavelet radiosity
algorithms with explicit (or implicit) discontinuity meshing.

5.3 Radiance

The basic ideas behind HR and WR can also be applied to the computation of radiance, i.e., global illumi-
nation in the presence of reflection which is no longer uniform with respect to direction. In this case the

physical quantity of interest has units [%] and the basic integral equation to solve becomes

L) = 2 + [ Foan2)Gla)Ee.p) do.

Here L(y, z) is the unknown radiance function describing the flow of power from y to z, f; is the bidirectional
reflectance distribution function (BRDF), and G accounts for geometry as before (with ¢ = 1). The BRDF
gives the relation at y between incoming radiance from z and outgoing radiance towards z.

Aupperle and Hanrahan [4] were the first to give a hierarchical finite element algorithm for radiance
computations. They extended their earlier work [20] in a straightforward manner by considering triple
interactions from A, via A, towards A. (as opposed to the case of radiosity with interactions from A,
towards A,). The complexity arguments are similar to the ones we gave for the case of radiosity with
the difference that the overall complexity is now O(k® + n) since initially all triples of surfaces have to be
accounted for. This work was extended to higher order multi-wavelet methods in [32].

In both of these approaches [4, 32] radiance was parameterized over pairs of surfaces. Christensen et
al.[9] pursued a different avenue. They treated radiance as a function of a spatial and directional argument
given by the corresponding integral equation

L(yywo) = Le(y;wo) + - fr(wiay;wo) COSOiLi(vai) dwi;

where L;(y,w;) = L(x,—w;) is the incoming radiance at y from direction w;, which is identical to the
outgoing radiance at some point x visible from y in the direction w;. The integration is now performed over
the hemisphere of incoming directions. The chief advantage of this formulation is the fact that recursive
coupling coefficient enumeration needs to consider only all pairs of input surfaces. As a basis they used
the Haar basis for the spatial support. For the directional part of the domain they constructed a basis
by parametrically mapping the Haar basis over the unit square onto the hemisphere. For a more detailed
discussion of some of the differences between these two approaches the reader is referred to [32].

Computing solutions to the radiance integral equations is notoriously expensive due to the higher di-
mensionality of the involved quantities, 4D functions interacting across a 6D integral operator with 4D
functions. Naive finite element methods are hopeless, but even hierarchical methods based on wavelets still
require enormous amounts of space and time and more research is needed before these techniques become
truly practical.

5.4 Clustering

In all our discussions so far we have only considered the intelligent subdivision of surfaces. Ironically the
historical roots of HR lie in n-body algorithms [19], which are all about clustering, not subdivision. This
difference moves most clearly into focus when considering the complexity analysis we gave earlier. There
we argued that HR and WR have a complexity of O(k? + n) where k is the number of input surfaces and
n the number of elements they are meshed into. In order to remove the k% dependence the hierarchy of
interactions must be extended “upward”. A number of such clustering algorithms have recently appeared
in the literature [30, 36, 35, §].

The main difficulty with clustering in the context of radiosity is due to visibility. For example, the light
emitted by a cluster of elements is not equal to the sum of the individual emissions. Similarly, the reflective
behavior of a cluster is not uniform in all directions even though each individual reflection is uniform in the
hemisphere above the respective surface.

Sillion [35] realizes clustering of surfaces by imposing an octree partition on the entire scene and treating
all surfaces within one of the octree nodes as an approximate volume density. In the limit with surfaces
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very small and uniform in each cube of the octree the resulting approximation is correct. The resulting
datastructure can be built in time linear in the number of surfaces and the only modification to an existing
HR solver is the introduction of volume elements characterized by their averaged behavior. As observed by
Sillion even in the case of purely diffuse reflection the aggregate behavior of any volume is generally not
diffuse (uniform in all directions). In order to account for this observation a correct system needs to be able
to deal with directionally dependent quantities.

Smits et al.[36] give a clustering extension to HR with a complexity of O(klogk + n) by introducing
higher level links between clusters of surfaces. The main task is to set up an error estimator usable by the
oracle, which is conservative but tight for such links. They too deal only with isotropic approximations of
clusters. Noting this deficiency Christensen et al.[8] give a clustering algorithm which addresses the more
general radiance case. Each cluster is treated as a point source (and receiver) whose behavior is characterized
as a function of direction with a small number of discretized directions. In this way the resulting algorithm
is more closely related to the multipole based algorithm of Greengard [19] rather than a wavelet method.

All of the above clustering algorithms compute an approximation of the radiosity or radiance at such a
coarse level that a final reconstruction step (also referred to as final gather) needs to be added to produce an
acceptable looking final image. This final step is generally very expensive and better techniques are clearly
desirable.

6 Conclusion

We have seen that the Galerkin method for integral equations gives rise to a linear system which needs to
be solved to find an approximation to the original integral equation solution. The linear system has entries
which are the coefficients of the kernel function itself with respect to some basis (standard or non-standard).
As such they possess properties which derive directly from the kernel function itself. Using wavelets as
basis functions the resulting matrix system is approximately sparse if the kernel function is smooth. A wide
class of operators whose kernel functions satisfy certain “falling off with distance” estimates have the right
properties. By ignoring all entries below some threshold the resulting linear system has only O(n) remaining
entries leading to fast solution algorithms for integral equations of this type. To realize an algorithm which is
O(n) throughout a function Oracle is needed to help enumerate the important entries in the matrix system.

HR was described in this context as an application of the Haar basis to the radiosity integral equation.
We argued that HR needs only a linear number of interactions between elements to achieve an a-priori ac-
curacy claim. The argument used geometric reasoning which corresponds exactly to the abstract arguments
given by Beylkin et al.[6]. In this way we in effect gave a constructive, geometric proof of the sparsity
claim for somewhat more benign operators than are treated in the general case. The development of these
arguments led to a WR algorithm which has been shown to perform exceedingly well in practice under many
circumstances [20, 31, 17, 14, 39].

The original method [31, 17] used tree wavelets (multi-wavelets and Flatlets) which simplify many im-
plementation issues and are a natural extension from the historical development out of HR. As such the
exploration of interesting basis functions from the wide variety of available wavelet bases has only begun
and we look forward to further developments in this area.
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