Recap

Haar
» simple and fast wavelet transform

Limitations
= not smooth enough: blocky

How to improve?
= classical approach: basis functions

= Lifting: transforms

Erasing Haar Coefficients
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Classical Constructions

Fourier analysis
= regular samples, infinite setting

= analysis of polynomials
Conditions:

= smoothness

» perfect reconstruction

But...
= Fourier analysis not always applicable

Lifting Scheme

Custom design construction
= entirely in spatial domain

Second generation wavelets
= boundaries
= irregular samples
= curves, surfaces, volumes
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Haar Transform

Averages and differences
= two neighboring samples

s=(a+h)/2
/ \a:s—d/Z
\ /b:s+d/2
d=b-a

a b

Haar Transform

In-place Version
= want to overwrite old values with new values
= rewrite

d=b-a s=a+d/2

b -=a a += b/ 2;

= inverse: run code backwards!

a -= bl2; b += a;
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Haar Transform

Forward

Haar Transform

Inverse
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Haar Transform

Lifting version
= split into even and odd
(even, 4, 0dd; ;)= Split(s;)

» predict and store difference: detail coefficient

= update even with detail: smooth coefficient

S;., = even,_; +d _,/2

Haar Transform

~ smooth
D Sj.1

even

)

s, — split U

5

odd

S;., = even,_; + U(d;_,)
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Haar Transform

Predict
» perfect if function is constant

» detail coefficients zero
= removes constant correlation

Update
= preserve averages of coarser versions

= avoid aliasing
= obtain frequency localization

Haar Transform

even ~~ smooth
® Sj.1

S; = split U

O

odd

Page 6



Lifting Scheme

Advantages
= in-place computation

» efficient, general
= parallelism exposed
= easy to invert

o -9

— split U U

me

rge

O

O

Lifting

Build more powerful versions
= higher order prediction
= Haar has order |
= higher order update

= preserve more moments of coarser data

An example
= linear wavelet transform
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Linear Prediction

Use even on either side
» keep difference with prediction

= exploit more coherence/smoothness/
correlation

original ‘\ i _/‘

even

Prediction

failure to be linear detail
QA?— )
N
detail y '/' odd

dqe = Qg+~ ]/2( Aok T Agk+2 )

Page 8



Update

Even values are subsampled
= aliasing!

DC components different
v/ average different \'

N T~

Update

detail Zero mean

ZR
PNl e
T~— Hhan

even

sk = ax +Y4(deq+dy)
smooth —* %detail
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Inplace Wavelet Transform

AVAVAVA
CAANAL

smooth A

Linear Wavelet Transform

Order
= linear accuracy: 2nd order

= linear moments preserved: 2nd order
= (2,2) of Cohen-Daubechies-Feauveau

@
— split \I‘ I::El
| /
Extend

= build higher polynomial order predictors

Page 10



Higher Order Prediction

Vo

\
[
' ' ’
‘ :
‘ e E

'
'
'
l' .

:
||||‘ ‘|‘

linear cubic

Higher Order Prediction

Use more (D) neighbors on left and right
» define interpolating polynomial of order N=2D

» sample at midpoint for prediction value
= example: D=2

effective weights:

-1/16 9/16 9/16 -1/16
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Ssummary

Lifting Scheme
= construction of transforms
= spatial, Fourier

Haar example
= rewriting Haar in place

Two steps
= Predict

= Update

Ssummary

Predict
» detail coefficient is failure of prediction

Update

= smooth coefficient to preserve moments, e.qg.,
average

Higher order extensions
= increase order of prediction and update
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Building Blocks

Transform
= forward

= inverse

{snk}=w{d;}
building blocks
= superposition ’/-

o =S o0 0D

Scaling Functions

Cascade/Subdivision
= single smooth coefficient

%
U

delta sequence

merge|—

T
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Scaling Functions

Cascade/Subdivision

Scaling Functions
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Twoscale Relation

Scaling function

AL ()
o o0 1 o 0 —mm» ¢X

l {h|} subdivide

000%21% 000 —p

0(x)= 3 hib(2x )

Duality

Function at 2 successive scales

Z Sikik (x) =1(x) = Z Sj+1)Pjra (x)
coarse —/4 ‘\ fine

column vectors of coefficients
0O: 0 0:0
& Depis. D ( b ):( Ty )H
H JTLIH H J:’kH row vectors of bases
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Interpolating Scaling Functions

Properties for order N=2D
= compact support:
¢(x)=0 xO-N+LN-1]

= interpolation:
(k) = &

= polynomial reproduction:

Z kPo(x —k) =xP

Interpolating Scaling Functions

Properties for order N=2D
= smoothness:
¢j,k o)

» twoscale relation:
N

0(x)= 3 ho(2x-)

I=-N

Sj+1l = ZhI—stj,k Ok (x) = Zhl—2k¢j+],| (x)
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Wavelets

Cascade/Subdivision
= single detail coefficient

0

?
U

merge|—

O

Wavelets
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Twoscale Relation

Wavelet
0 0 0 0 ——pp
cascade
{gi}
00 0 0 ———p

A

W(x) = Z 910(2x 1)
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Average Interpolation

11

constant quadratic
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Average Interpolation

Idea
= assume observed samples are averages

= which polynomial would have produced those

averages?
match

observation p(X)
Sjk-1 Sjk Sjk+1

Sj+12k  Sj+1,2k+1

finer averages

Average Interpolation

/TN
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Scaling Functions

1.0
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0.0
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3

Average Interpolating Scaling Functions

Properties for order N=2D+1
= compact support:
¢(x)=0  xO[-N+1N]

= average interpolation:
k+1

L(I)(X)dx =0
= polynomial reproduction:

ZAve(xp ,k)q)(x -k)=xP
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Average Interpolating Scaling Functions

Properties for order N=2D+1
= smoothness:
¢j,k o)

= twoscale relation:
N

009= S nib(2x-)

|==N+1

Ok (x) = Zhl—2k¢j+],| (X)  Sjspy = ZhI—stj,k

Wavelets
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Differentiation

Interpolation and average interpolation
= given interpolation sequence compute exact

derivative
{sox} N = 2D
{S'O,k :SO,k+1_SO,k} N'=2D-1

RUIORRICER R0
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Cubic B-splines

Subdivision
= generate {I,4,6,4,1}

Sj+12k+1 = (Sj,k + Sj,k+1)/2
Sj+12k = Sjk t (Sj+L2k—1 +3j,2k+1)/2
0\ 0o\ b_l

\J/ L
ELTZI IEEI [P] [merge}l—

&J

Cubic B-spline Wavelet

Completing the space

= put delta on detail wire: {I,4,1}
0 £\

p_l

Y
\Uy
ELE EEI EP:I merge
©

= get vanishing moment with update stage:
{3/8,3/8}
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Cubic B-spline

1.0

0.5

0.0
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Scaling function

Page 25



