Recap

Haar

■ simple and fast wavelet transform

Limitations

■ not smooth enough: blocky

How to improve?

■ classical approach: basis functions

■ Lifting: transforms

Erasing Haar Coefficients

Classical Constructions

Fourier analysis

- regular samples, infinite setting
- analysis of polynomials

Conditions:

- **■** smoothness
- perfect reconstruction

But...

■ Fourier analysis not always applicable

Lifting Scheme

Custom design construction

entirely in spatial domain

Second generation wavelets

- boundaries
- irregular samples
- curves, surfaces, volumes

Averages and differences

■ two neighboring samples

Haar Transform

In-place Version

- want to overwrite old values with new values
- **■** rewrite

$$d = b - a$$
 $s = a + d/2$
b -= a; a += b/2;

■ inverse: run code backwards!

$$a = b/2; b += a;$$

Forward

```
for( s = 2; s <= n; s *= 2 )
  for( k = 0; k < n; k += s ){
    c[k+s/2] -= c[k];
    c[k] += c[k+s/2] / 2;
}</pre>
```

Haar Transform

Inverse

```
for( s = n; s >= 2; s /= 2 )
  for( k = 0; k < n; k += s ){
    c[k] -= c[k+s/2] / 2;
    c[k+s/2] += c[k];
}</pre>
```

Lifting version

split into even and odd

$$(even_{j-1}, odd_{j-1}) := Split(s_j)$$

■ predict and store difference: detail coefficient

$$d_{j-1} = odd_{j-1} - even_{j-1}$$

■ update even with detail: smooth coefficient

$$s_{i-1} = even_{i-1} + d_{i-1}/2$$

Haar Transform

$$d_{j-1} = odd_{j-1} - P(even_{j-1})$$

$$s_{j-1} = even_{j-1} + U(d_{j-1})$$

Page 5

Predict

- perfect if function is constant
 - detail coefficients zero
- removes constant correlation

Update

- preserve averages of coarser versions
- avoid aliasing
- obtain frequency localization

Haar Transform

Lifting Scheme

Advantages

- in-place computation
- efficient, general
- parallelism exposed
- easy to invert

Lifting

Build more powerful versions

- higher order prediction
 - Haar has order I
- higher order update
 - preserve more moments of coarser data

An example

■ linear wavelet transform

Linear Prediction

Use even on either side

- keep difference with prediction
- exploit more coherence/smoothness/ correlation

Prediction

Update

Even values are subsampled

■ aliasing!

Update

Inplace Wavelet Transform

Linear Wavelet Transform

Order

- linear accuracy: 2nd order
- linear moments preserved: 2nd order
- (2,2) of Cohen-Daubechies-Feauveau

Extend

■ build higher polynomial order predictors

Higher Order Prediction

Higher Order Prediction

Use more (D) neighbors on left and right

- define interpolating polynomial of order N=2D
- sample at midpoint for prediction value
- example: D=2

effective weights:

-1/16 9/16 9/16 -1/16

Summary

Lifting Scheme

- **■** construction of transforms
- spatial, Fourier

Haar example

■ rewriting Haar in place

Two steps

- **■** Predict
- **■** Update

Summary

Predict

■ detail coefficient is failure of prediction

Update

■ smooth coefficient to preserve moments, e.g., average

Higher order extensions

■ increase order of prediction and update

Building Blocks

Transform

■ forward

$$\boldsymbol{W}\!\left\{\boldsymbol{s}_{n,k}\right\} = \!\left\{\boldsymbol{d}_{j,l}\right\}$$

■ inverse

$$\left\{s_{n,k}\right\} = W^{-1}\left\{d_{j,l}\right\}$$
 building blocks superposition
$$\left\{s_{n,k}\right\} = \sum d_{j,l} \left(W^{-1}\left\{\delta_{j,l}\right\}\right)$$

Scaling Functions

Cascade/Subdivision

■ single smooth coefficient

Scaling Functions

Cascade/Subdivision

Scaling Functions

Twoscale Relation

$$\phi(\boldsymbol{x}) = \sum h_{\boldsymbol{I}} \phi(\boldsymbol{2}\boldsymbol{x} - \boldsymbol{I})$$

Duality

Function at 2 successive scales

$$\sum_{k} s_{j,k} \phi_{j,k}(x) = f(x) = \sum_{l} s_{j+1,l} \phi_{j+1,l}(x)$$
 coarse fine

column vectors of coefficients

$$\begin{pmatrix} \vdots \\ \mathbf{s}_{j+1,l} \\ \vdots \end{pmatrix} = \mathbf{H} \begin{pmatrix} \vdots \\ \mathbf{s}_{j,k} \\ \vdots \end{pmatrix} \quad \begin{pmatrix} \cdots & \phi_{j,k} & \cdots \end{pmatrix} = \begin{pmatrix} \cdots & \phi_{j+1,l} & \cdots \end{pmatrix} \mathbf{H}$$
 row vectors of bases

Interpolating Scaling Functions

Properties for order N=2D

■ compact support:

$$\phi(\boldsymbol{x}) = \boldsymbol{0} \qquad \boldsymbol{x} \not\in \left[-N + 1, N - 1 \right]$$

■ interpolation:

$$\varphi(\mathbf{k}) = \delta_{\mathbf{k}}$$

■ polynomial reproduction:

$$\sum_{\textbf{k}} \textbf{k}^{\textbf{p}} \phi(\textbf{x} - \textbf{k}) = \textbf{x}^{\textbf{p}}$$

Interpolating Scaling Functions

Properties for order N=2D

■ smoothness:

$$\phi_{\boldsymbol{j},\boldsymbol{k}} \in \boldsymbol{C}^{\alpha(\boldsymbol{N})}$$

■ twoscale relation:

$$\phi(\boldsymbol{x}) = \sum_{l=-N}^{N} h_l \phi(2\boldsymbol{x} - l)$$

$$s_{j+1,l} = \sum_{k} h_{l-2k} s_{j,k} \qquad \qquad \phi_{j,k}(x) = \sum_{l} h_{l-2k} \phi_{j+1,l}(x)$$

Wavelets

Cascade/Subdivision

■ single detail coefficient

Wavelets

34

Twoscale Relation

Wavelet

26

Average Interpolation

Average Interpolation

Idea

- assume observed samples are averages
- which polynomial would have produced those averages?

Average Interpolation

Scaling Functions

Average Interpolating Scaling Functions

Properties for order N=2D+1

■ compact support:

$$\phi(\mathbf{x}) = \mathbf{0} \qquad \mathbf{x} \notin [-\mathbf{N} + \mathbf{1}, \mathbf{N}]$$

■ average interpolation:

■ polynomial reproduction:

$$\sum_{\textbf{k}} \textbf{Ave} \Big(\textbf{x}^{\textbf{p}}, \textbf{k} \Big) \phi(\textbf{x} - \textbf{k}) = \textbf{x}^{\textbf{p}}$$

Average Interpolating Scaling Functions

Properties for order N=2D+1

■ smoothness:

$$\phi_{\boldsymbol{j},\boldsymbol{k}} \in \boldsymbol{C}^{\alpha(\boldsymbol{N})}$$

■ twoscale relation:

$$\phi(\boldsymbol{x}) = \sum_{l=-N+1}^{N} h_l \phi(2\boldsymbol{x} - l)$$

$$\phi_{j,k}(x) = \sum_{l} h_{l-2k} \phi_{j+1,l}(x) \qquad s_{j+1,l} = \sum_{k} h_{l-2k} s_{j,k}$$

Wavelets

Differentiation

Interpolation and average interpolation

■ given interpolation sequence compute exact derivative

$$\begin{split} \left\{s_{0,k}\right\} & \qquad N=2D \\ \left\{s_{0,k}' = s_{0,k+1} - s_{0,k}\right\} & \qquad N'=2D-1 \\ \\ \frac{d}{dx}\phi^I(x) = \phi^{AI}(x+1) - \phi^{AI}(x) \end{split}$$

Cubic B-splines

Subdivision

■ generate {1,4,6,4,1}

$$\mathbf{s_{j+1,2k+1}} = \left(\mathbf{s_{j,k}} + \mathbf{s_{j,k+1}}\right) / 2$$

$$\mathbf{s_{j+1,2k}} = \mathbf{s_{j,k}} + \left(\mathbf{s_{j+1,2k-1}} + \mathbf{s_{j,2k+1}}\right) / 2$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

$$\mathbf{p}$$

Cubic B-spline Wavelet

Completing the space

■ put delta on detail wire: {1,4,1}

■ get vanishing moment with update stage: {3/8,3/8}

Cubic B-spline

49