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Abstract

We present a novel method to extract iso-surfaces from distance
volumes. It generates high quality semi-regular multiresolution
meshes of arbitrary topology. Our technique proceeds in two stages.
First, a very coarse mesh with guaranteed topology is extracted.
Subsequently an iterative multi-scale force-based solver refines the
initial mesh into a semi-regular mesh with geometrically adaptive
sampling rate and good aspect ratio triangles. The coarse mesh ex-
traction is performed using a new approach we callsurface wave-
front propagation. A set of discrete iso-distance ribbons are rapidly
built and connected while respecting the topology of the iso-surface
implied by the data. Subsequent multi-scale refinement is driven by
a simple force-based solver designed to combine good iso-surface
fit and high quality sampling through reparameterization. In con-
trast to the Marching Cubes technique our output meshes adapt
gracefully to the iso-surface geometry, have a natural multiresolu-
tion structure and good aspect ratio triangles, as demonstrated with
a number of examples.
Keywords: Semi-regular meshes, subdivision, volumes, surface extraction, implicit

functions, level set methods

1 Introduction
Iso-surface extraction is a fundamental technique of scientific vi-
sualization and one of the most useful tools for visualizing volume
data. The predominant algorithm for iso-surface extraction, March-
ing Cubes (MC) [36], computes a local triangulation within each
voxel of the volume containing the surface, resulting in a uniform
resolution mesh. Often much smaller meshes adequately describe
the surface since MC meshes tend to oversample the iso-surface,
encumbering downstream applications, e.g., rendering, denoising,
finite element simulations, and network transmission. These chal-
lenges can be addressed through multiresolution mesh representa-
tions.

We present a method for thedirect extraction of an adaptively
sampled multiresolution iso-surface mesh with good aspect ratio
triangles. The multiresolution structure is based on adaptivesemi-
regular meshes, well known from the subdivision setting [54]. A
semi-regular mesh consists of a coarsest level triangle mesh which
is recursively refined through quadrisection. The resulting meshes
have regular (valence 6) vertices almost everywhere. Adaptivity is
achieved through terminating the recursion appropriately and en-
forcing a restriction criterion (triangles sharing an edge must be
off by no more than one level of refinement). Conforming edges
are used to prevent T-vertices (see Fig. 1). Because of their spe-
cial structure such meshes enjoy many benefits including efficient
compression [25] and editing [55] (among many others). Since the

Figure 1: Example extractions of adaptive semi-regular meshes
from volumes using our algorithm.

mesh hierarchy is represented through a forest of quad-trees, im-
plementation is simple, elegant, and efficient. Figure 1 shows an
example of a multiresolution semi-regular mesh extracted from a
distance volume with our algorithm.

1.1 Contributions
We propose an algorithm for the extraction of semi-regular meshes
directly from volume data. In a first step a coarse, irregular connec-
tivity mesh with the same global topology as the iso-surface is ex-
tracted (Fig. 2, left). This stage works for arbitrary scalar volumes
with well defined iso-surfaces and has a small memory footprint.
In a second step the mesh is refined and its geometry optimized
(Fig. 2, right). Here we require a distance volume for the desired
iso-surface. During refinement, aspect ratios and sizes of triangles
are controlled through adaptive quadrisection andreparameteriza-
tion forces. Since our algorithm proceeds from coarser to finer res-
olutions, simple multi-scale methods are easily used. In particular
we solve successively for the best fitting mesh at increasing resolu-
tions using an upsampling of a coarser solution as the starting guess
for the next finer level. In summary, novel aspects of our algorithm
include:
• direct extraction of semi-regular meshes from volume data;

• a new and fast method to extract a topologically accurate coarse
mesh with low memory requirements, suitable for large datasets;

• an improved force-based approach to quickly converge to a re-
fined mesh that adaptively fits the data with good aspect ratio
triangles.

1.2 Related Work
Traditional Methods and Multiresolution proceed by first
constructing an MC mesh and then improving it through simpli-
fication [20] and/or remeshing [11, 29, 33, 28, 19]. Common mesh
simplification algorithms have large memory footprints [21, 15]
and are impractical for decimating meshes with millions of sam-
ples (see [35, 34] to address this issue). In addition, simplification
algorithms create irregular connectivity meshes with non-smooth
parameterizations. These cannot be compressed as efficiently as
semi-regular meshes [25] leading to the need for remeshing. In



Figure 2: Overview of our algorithm (left to right). Given a volume and a particular iso-value of interest a set of topologically faithful
ribbons is constructed. Stitching them gives the coarsest level mesh for the solver. Adaptive refinement constructs a better and better fit with
a semi-regular mesh.

contrast we wish to directly extract multiresolution meshes with a
smooth parameterization.

Alternatively multiresolution can be applied to the volume fol-
lowed by subsequent MC extractions [50, 2]. Unfortunately, it
is difficult to guarantee the topology of the mesh extracted from
the simplified volume, e.g., small handles will disappear at various
stages of the smoothing step, causing a change in the topology of
the extracted mesh (see [16] for a new solution). In contrast our
approach constructs a topologically accurate semi-regular mesh at
every stage of the algorithm.
Deformable Model Approaches define the surface as the min-
imum (thin-plate) energy solution induced by a suitable potential
function [40, 23, 38, 43, 28]. The second stage of our algorithm
proceeds similarly with the important distinction that we exert spe-
cific control over the connectivity of the mesh to achieve a semi-
regular structure and we use a balloon [5] approach coupled with
a novelreparameterizationforce. Similar to previous approaches
the initial mesh for our finite element solver must have the cor-
rect topology, however almost all previous approaches rely on user
input to determine the appropriate global topology for the initial
mesh [40, 43, 28, 38]. The largest advantage of our algorithm is
our ability to extract a surface of arbitrary topology without any
input from the user. Solvers which accommodate topological mod-
ifications are possible, but rather delicate [31, 39]. Instead we opt
for a robust algorithm whichautomaticallyextracts a surface with
the correct global topology from the volume datawithout recourse
to MC.
Topological Graphs can be constructed to encode the topology
of a surface. Our algorithm uses the adjacency relationships of the
voxels in the volume to traverse the surface and record its connec-
tivity in a graph that is topologically equivalent to the MC mesh for
the same volume. This traversal and graph construction is related to
work done by Lachaud [30] on topologically defined iso-surfaces.
However, unlike Lachaud we do not triangulate the entire graph.
Instead, our algorithm extracts a coarse mesh by eliminating redun-
dant regions of the graph where the topology does not change.
Morse Theory and Reeb Graphs are also concerned with cod-
ing the topology of a surface [47, 45, 46]. However, neither method
uniquely identifies the embedding of the surface in space, poten-
tially leading to ambiguities in the topology coding. Work done on
surface coding and Reeb graph construction by Shinagawa, using
contours defined by a height function, resolves these ambiguities
through requiring apriori knowledge [45, 46] of the number of han-
dles. In contrast the topological graph we construct from the con-
tours of the wavefront propagationuniquelydetermines the topol-
ogy of the surface withnoapriori information (for more details and
a proof see [53]).
Distance Iso-contours are critical in our approach. We use
ideas from level set methods on manifolds [26, 44] and discrete dis-
tance computations [32, 49]. Note that we compute these distances
on implicitly defined (through the volume) surfaces, not on meshes.
Specifically, we use the connectivity relationship of voxels in the
volume to build a graph representing the surface. Distances are
then propagated on this graph, creating a discrete distance graph.
Iso-distance contours in this graph are used to correctly encode the
topology of the surface without ever constructing an explicit mesh
as in the MC algorithm.

Signed Distance Volumes are required by our solver, though
the initial topology discovery stage runs on any volume with well-
defined iso-contours. A signed distance volume stores the shortest
signed distance to the surface at each voxel which is useful in a
variety of applications [7, 6, 17, 42, 51]. Distance volumes are
constructed by computing the shortest Euclidean distance within
a narrow band around the desired iso-contour and then sweeping
it out to the remaining voxels using a Fast Marching Method [44].
Distance volumes can easily be generated for a variety of input data.
For example, distance volumes for MRI and CT data are computed
by fitting a level set model to the desired iso-surface, creating a
smooth segmentation of the input data [37, 52].

2 Coarse Mesh Extraction

In order to construct a topologically accurate coarse representation
of a given iso-surface we slice the surface along contours that cap-
ture the overall topology. This concept is similar to representing a
surface with a Reeb graph, which uses contours defined by a height
function. The latter leads to ambiguities which we avoid by using
contours of a distance function definedon the iso-surface. Exam-
ining the way these geometric contours are connected, we can al-
ways uniquely encode a topological graph of the iso-surface. This
is achieved by discarding topologically redundant cross-sections,
i.e., those where surface topology can not change.

Background Before we explain the details of this approach,
recall some important theorems and definitions from Geometric
Topology [41]. First, the topology of a 2-manifoldM (closed poly-
hedral surface) is completely determined by its genus:

χ(M) = V − E + F = 2(1− g)

whereχ is the Euler characteristic,V the number of vertices,E the
number of edges,F the number of faces andg the genus. We use
this fact and two related theorems:
• the Euler characteristic of an entire polyhedron can be decom-

posed into the sum of the Euler characteristics of smaller regions
whose disjoint union is the polyhedron;

• the Euler characteristic of any given 2-manifold, or subset of a
2-manifold is invariant,regardless of how the surface is trian-
gulated.

Given these facts, it is easy to see that topology can be captured
accurately by selecting contours where the Euler characteristic of
the associated region will change the genus of the surface. This
selection is based on decomposing the surface into a combination
of a few simple primitives:

1-sphere: A 1-sphereJ is a set homeomorphic to a unit circle with
χ(J) = 0.

2-cell: A 2-cellD is a set homeomorphic to a disk withχ(D) = 1.

For example, we can decompose a sphere into two 1-spheres (con-
tours), two 2-cells (disks), and the triangulation between the two
contours (which we call aribbon) that respects the orientation of
the original surface (see Fig. 3). Consider the combined Euler char-
acteristic of these regions. As stated in the definitions, the Euler



characteristic of each of the two disks equals 1 while the Euler char-
acteristic of the contours equals 0. Given this, and since the genus
g of the sphere is 0, we deduce that the Euler characteristicχ of
this ribbon is 0. This type of decomposition gives a general way

Figure 3:On the left is a sphere decomposed into a ribbon and two
disks. On the right (top) is an-to-1 ribbon. On the right (bottom)
is the closed ribbon, making it homeomorphic to a sphere

to compute the Euler characteristic and thus the genus of a surface:
separate the surface into regions that either are redundant or impor-
tant with respect to the topology based on the Euler characteristic
of those regions. It is important to note that we do not compute the
Euler characteristic on a triangulated mesh and instead we rely on
the implicit representation of the surface in the volume data.

Volume Setting Specifically, consider an implied surface inter-
sected by a Cartesian grid. This intersection and the entire grid can
be represented by tuples(i, F (i)), wherei is a point in 3D space
andF (i) is the scalar value of the distance volume at that point
in space. Without loss of generality we assume that the surface is
the zero iso-contour of the volume. The surface will be pierced by
the edges and faces of the Cartesian grid, creating a collection of
patches each of which we denote as aSurfel, for surface element
(Fig. 4, left). The edges of the grid which pierce the surface are
denotedactive edges. Their endpoints lie on opposite sides of the
surface. Edge endpoints are considered either outside the surface if
F (i) ≥ 0, or inside the surface ifF (i) < 0, thus edge endpoint
cannot degenerately lieon the surface. The active edges intersect
the surface at points callednodes. For the case of an iso-surface
embedded in volume data, the resulting Surfel graph will be regu-
lar in the sense that all nodes are valence four. This Surfel graph is
never triangulated, only its connectivity information is used to build
the topological graph of the surface.

wavefront propagationno shared active edges
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Figure 4: Dark grey arrows indicate how to follow active edges
from a given Surfel (left). On the right, the Surfel with distancen
will propagate across its active edges the distancen + 1 to con-
nected Surfels. Note that the other Surfel in this voxel will only
receive a distance when the wavefront reaches it.

Given this setting we return to the original goal of generating
slices to subsample the surface while retaining the original topol-
ogy. In order to code the Euler characteristic we traverse the Surfel
graph and establish connectivity relationships between all the re-
gions of the surface. Connectivity information is already implicitly
represented by voxel adjacency in the volume. The construction of
this graph has two parts. First we construct a distance tree, similar
to propagating a wavefront across a surface in the geodesic setting.

The frontier of the wavefront at any given distance will be a con-
tour that geometrically fits the surface. Next we augment the dis-
tance tree by establishing connectivity between Surfels of the same
distance, similar to constructing iso-contours for geodesics on the
underlying iso-surface.

2.1 Wavefront Propagation and Distance Tree
The first step in our approach is to construct a topological distance
tree by enumerating the Surfels through a wavefront-like propaga-
tion of Surfel distance. First consider the following graph represen-
tation of the surface:G is a graph, such that each vertexs ∈ G
is a Surfel andn ∈ G is 1-node adjacentto s if n shares a node
with s. The edges ofG are defined as the connections between
eachs ∈ G and its 1-node adjacent neighbors. The distance treeD
is induced by running Dijkstra’s algorithm onG starting from any
source Surfels, with edge weights all equal to one. This propagates
a distance1 to all Surfels and constructs a tree such that:
• Each Surfel is 1-node adjacent to its parent in the tree;

• The shortest distance from a Surfel to the root is the depth of the
Surfel in the tree hierarchy.

Surface Wavefront Propagation Any voxel that the surface
passes through can serve as the root Surfel of our distance tree.
From there, we construct the tree by enumerating the Surfels using
Dijkstra’s algorithm (Fig. 5, left). This propagation between adja-
cent Surfels can be done efficiently using active edges of the initial
Cartesian grid to determine Surfel neighbors. The distance tree re-
quires only a compact data structure and is represented by storing
an additional integer and pointer per Surfel for each voxel as indi-
cated by Figure 5(left). Each voxel typically has a single Surfel but
up to four Surfels may be associated with a single voxel. This is
of no consequence to the algorithm since we propagate the wave-
front only across active edges (Fig. 4). Ambiguities can arise when
using only the eight corners of a voxel to determine an ordering of
the active edges but are easily avoided by selecting one consistent
solution [3].

2.2 On-the-fly Construction of Topological Graph
The next step in the algorithm constructs a topological graph by
augmenting the distance tree. This is done by collecting Surfels of
the same distance into continuous ribbons, representing strips of the
surface topology. The process of linking ribbons requires that we
start with a given Surfel of distancen and traverse pairs of active
edges—facesof the voxel bounding the given Surfel—in an ordered
manner until we find another adjacent Surfel of the same distance
n. As the ribbon is traversed, we enumerate an in-ribbon ordering
for all the Surfels to assist in triangulation of the coarse mesh (see
Fig. 4).

Constructing Ribbons To construct a consistent ordering
within the ribbons, we use an idea very similar to work done on
encoding a digital region boundary [13] and digital surface track-
ing [18]. Since the edges of each Surfel are ordered (see Fig. 4),
a consistent traversal ordering can be established. For example,
as shown in figure 4, this Surfel could be identified as:{E1, E4,
E5}. During ribbon construction for the distancen, if this Surfel
is reached by crossing the active edge pair{E1, E4}, first the next
active edge pair{E4, E5} would be checked to see if the neighbor-
ing Surfel incident on this edge pair is the same distance. If it was
not, the next pair would then be checked. One of these neighboring
Surfels must be the same distance by definition of our wavefront
propagation. The predecessor of the present Surfel must have at
least one other successor which is 1-node adjacent to the present
Surfel. This process of linking neighboring Surfels is continued

1When we refer to Surfel distance, we mean the path distance associated
with the edges ofG, i.e. each Surfel is distance 1 from its 1-node adjacent
neighbors. This is a discrete, Surfel based distance.
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Figure 5:Small portion of the distance tree overlayed on some Sur-
fels (left). The Surfel labeled 0 is 1-node adjacent to all the Surfels
labeled 1 since it shares at least one grey node with each of them.
On the right is an example of 2-node adjacency between Surfels of
the same distance as required in ribbon construction.

until the initial Surfel of distancen is found, creating a continuous
contour of the surface.

For a given distancen, after a single ribbon is constructed, we
check to make sure that all the valid Surfels of distancen are part
of a ribbon. If not, the ribbon construction is restarted with one
of the unused Surfels at leveln. This process continues until all
Surfels are incorporated in the topological graph structure. Each
distinct ribbon of the same distance is assigned a distinct branch
name. Consequently, if there are multiple ribbons at leveln, they
will have unique branch names, either derived from their parent or
assigned uniquely for completely new branches.

Cleanup of Ribbons If distance is propagated na¨ıvely, ribbons
could have tails (Fig. 7). Tails are large or small dead-ends of the
wavefront. A dead-end of a wave front occurs when the wavefront
runs into itself. Tails do not provide additional topological infor-
mation [53] and are removed by pruning them from the distance
tree during distance propagation: if a voxel cannot propagate its
distance forward because all of its neighbors have already been vis-
ited, it is pruned from the distance tree.

The Topological Graph This construction guarantees that the
topological graph has particular properties. Specifically, our topo-
logical graph is a representation of all the Surfels such that:
• All of the properties of a distance tree hold;

• Every Surfel has 2-node adjacency with exactly two other Sur-
fels of the graph that are of the same distance and the same
branch number — i.e. they share an edge (see Fig. 5, right).

These criteria establish that our topological graph is essentially
composed of a collection of continuous contours of the surface.
The dual of these contours are homeomorphic to a 1-sphere and
combined with the root Surfel and leaf ribbons (homeomorphic to
2-cells), can be used to completely code the topology of the surface.

2.3 Coarse Mesh Construction
The topological graph provides everything needed to build the
coarse mesh. In order to have a good coarse sampling of the surface,
we only include the smallest number of ribbons necessary: Ribbons
essential for coding topology are those inducing topologicalevents.
A ribbon represents a topological event only if it contributes to a
change in the Euler characteristic of that region of the surface.

Ribbon Classification Consider the Euler characteristic of the
three types of ribbon adjacencies:

Endcaps: A root Surfel or a leaf ribbon: these are 2-cells with
χ = 1.

1-to-1 ribbon : The most common case for a ribbon comprised of
two connected 1-spheres withχ = 0 (by the same argument
used in section 2).

1-to-n ribbon (and vice-versa) : The regions of the surface that
represent a possible change in the topology. For these branch-
ings the Euler characteristic can be computed similar to the

1-to-1 ribbon case: close the different branches by endcaps to
get a topological sphere. Hence for 1-to-n ribbons (see Fig. 3)
we haveχ = 1− n.

For example, in a torus there would be one 1-to-2 ribbon where
the graph traversal first encounters the hole of the torus and one 2-
to-1 ribbon where the hole ends. Both of these events need to be
captured in order to construct the correct topology of the torus. In
contrast, the surface region between these two important events is a
sequence of adjacent 1-to-1 ribbons for each branch which can be
discarded without changing the topology of the surface.

Since these adjacency relationships are completely determined
by ribbon neighbors, ribbon constructionand event detection can
be performed in a sweep algorithm. Once the ribbons at leveln
are constructed, event detection is performed by walking along the
previous ribbons at leveln − 1 to see if an event ribbon was en-
countered. For example, for each of the Surfels in ribbons at level
n− 1, we check that their descendants have the same branch num-
ber. If not, a 1-to-n ribbon has been found. Likewise by keeping
track of the branch numbers already seen, an-to-1 ribbon can be
detected when different predecessor ribbons are connected to the
same descendant ribbon. Finally, if a ribbon has no valid descen-
dant ribbons, it is saved as an endcap.

Figure 6:1-to-n ribbon detection (n-to-1 ribbon detection is simi-
lar but inverted).

The desired coarseness of the mesh can be controlled by adding
criteria for ribbon selection. For example, consider a requirement
that the initial mesh exhibit good aspect ratio triangles. This can be
achieved by selecting ribbons at multiples of some integer distance
w and changing the sampling density within the ribbons to also be
of average distancew.

Figure 7: On the left is the the distance ribbons for the feline
dataset. The source Surfel is near the feline’s tail. On the right
is subsampling of the unmodified distance ribbons. There are two
visible tails on the left wing and on the nose.

Mesh Construction At this point, we have a list of all contours
of the surface which are required for tiling a good coarse approxi-
mation of the final surface. The final step of our algorithm is related
to contour stitching [1, 14, 12]. However, since we work within the



framework of the volume data we do not face the traditional cor-
respondence problems of contour stitching. Specifically, the vol-
ume data and the topological graph prevent ambiguities about inter-
contour connections.

Ribbon Subsampling and Shortest Distance Projection
The general procedure is to subsample each ribbon along its length
to convert it into a coarse contour of edges and vertices to be tri-
angulated with adjacent contours. Adjacent contours are connected
to one another by projecting ribbon samples to the next saved rib-
bon (see Figure 6). The projection step may result in samples being
too close or too far away from one another due to changes in the
geometry of the iso-surface. In this case we can adjust the number
of samples to accommodate the density change by snapping close
points together, or inserting a midpoint sample. The samples on
both contours are enumerated in corresponding order to facilitate
triangulation. Endcaps are evenly subsampled and connected to a
central point.

Stitching It is easy to tile two contours that have a one-to-one
correspondence in their sample enumeration. The general approach
of our algorithm is tobreakthe ribbons into one-to-one correspon-
dence and then use bridges between adjacent connected ribbons
to correctly model the topology of the surface. Thus 1-to-n rib-
bons andn-to-1 ribbons are conceptually handled by “breaking”
them inton pairs of 1-to-1 ribbons with conforming bridges be-
tween appropriate segments (Fig. 8). This is done by making a pass
around the larger ribbon to find if two neighboring samples have
been projected from different predecessor ribbons, in which case
they are stored to make the conforming bridge (Fig. 8). The follow-
ing pseudo code outlines the stitching algorithm:

For all saved ribbons
//process all m ribbons of distancen
If a ribbon is not sampled

evenly sample at intervals ofw Surfels
//else the ribbon may already be sampled from previous projection
For each sample of the current ribbons

Project down to next saved ribbons
//check the spacing for the new samples
For each Surfel of the child ribbons

If samples too close: snap to one sample
If samples too distant: insert a midpoint

allocate sample lists for breaking ribbons into 1-to-1
top-lists[m], bottom-lists[n]//n is the number of child ribbons
//put the current and projected samples into the appropriate lists
Traverse the current ribbon’s samples

If the current ribbon is a 1-to-n ribbon
branch = child sample’s branch number
Put the current sample in the top-list[branch]
Put the associated child sample in the bottom-list[branch]

Else if the current ribbon is an-to-1 ribbon
//same procedure but branch = current ribbons branch number

Triangulate the ordered samples of the corresponding top and bottom lists

//check for edges to make conforming bridge
If the current ribbon is a 1-to-n ribbon
Traverse the current ribbon’s samples

If two neighbor samples have children with different branch numbers
Store the samples until the corresponding pair is found

Triangulate the four samples to make the conforming bridge
Else if the current ribbon is an-to-1 ribbon
//same procedure but traverse the child ribbon’s samples

It is worth noting that there is a case equivalent to an-to-1 ribbon
immediately followed by a 1-to-m ribbon. Due to the discrete na-
ture of the samples this can appear as ann-to-m ribbon. This case
is easily identifiable and tagged in the event detection: two child
ribbons will have more than one parent in common. The previous
pseudo-code applies to this special case as well.

Branch 1 of Ring n
Branch 2 of Ring n

Conforming Bridge

Figure 8:Stitching example of an-to-1 ribbon.

2.4 Discussion
One of the benefits of this approach is the low memory overhead
for the topological graph representation. In the case of anO(n3)
volume the storage requirement for the distance tree is on average
O(n2), as it depends on the size of the surface. The only other
data that we need to store for generation of the coarse mesh is de-
pendent on the ribbons of the topological graph which is approxi-
matelyO(n). Memory overhead for ribbons is minimized by keep-
ing only, (i) the ribbons selected to be part of the coarse mesh; (ii)
the last ribbon constructed and (iii) the current ribbon, which is be-
ing evaluated for possible selection. Although both our algorithm
and MC use total storage ofO(n2) on average, our algorithm has a
more compact runtime footprint than a typical MC implementation.
In particular, a time efficient implementation of the MC algorithm
typically keeps information for all the voxels on the surface. This
requires storage of three float values associated with each edge in-
tersection (up to 36 floats per voxel) and three integers per face (up
to 12 integers per voxel). In contrast, our algorithm does not re-
quire such detailed storage and only requires one integer and one
pointer per voxel. Furthermore, we have presented the algorithm
as if a distance value is permanently stored for each Surfel. This is
only true conceptually, as distance values can be stored temporarily
and only for voxels on thefrontier region of the sweep. The frontier
region of the sweep is the region of the surface between the last rib-
bon selected to be a part of the mesh and the current ribbon being
evaluated. In addition, assuming that a subsequent simplification
is performed on the MC mesh, typical algorithms will use at least
an additional copy of the finest mesh and a sorted list of vertices,
resulting in an even larger memory footprint than our entire coarse
extraction routine.

3 Multi-Scale Force-based Solver
Once a coarse mesh with the correct topology is found, the next step
of the algorithm consists of turning this initial mesh into a hierar-
chical triangulation fitting the data with suitable sampling densities
and well shaped triangles. To solve for the iso-surface one may con-
sider the signed distance function of the volume as a potential field
and search for the minimum potential solution [24, 23, 22, 43, 38].
Unfortunately, this approach has a significant drawback: the trade-
off between closeness to the data and the smoothness of the solution
is hard to tune. In essence, smoothness of the solution and faithful-
ness to the desired goal surface compete with each other. Too much
regularization will lead to smooth, unfit surfaces, while not enough
regularization will lead to convergence difficulties. In both cases,
the overall speed and accuracy is very dependent on fine tuning of
parameters. This has been partially addressed by scheduling the
regularization as decreasing in time [22]. Such strategies help, but
still require careful tuning of parameters on a case by case basis.

The above approaches use the gradient of distance whose com-
putation is notoriously unstable, especially in the presence of noise.
For this reason we have chosen to use the distance itself. The cur-
rent mesh approximation locally inflates or deflates based on the
distance to the zero-contour. The direction of (local) motion of the
mesh is given by its local normal, while the magnitude (and sign)
of motion are determined by the distance function itself, similar
to [40]. This approach, inspired by work in image processing [5],



has already been used with success in the context of active implicit
surfaces [8, 51]. As a novel element we add a reparameterization
technique to control triangle shapes and their variation across the
surface. In this way, we obtain adaptive sampling and well shaped
triangles without introducing forces which compete with the inter-
polation constraints. Since the meshes are refined through adaptive
quadrisection we have a natural multiresolution structure which we
exploit directly for an efficient multiscale solver. Our setup gives
rise to a number of different force terms detailed below. Exter-
nal forces minimize the distance between the mesh and the zero-
contour of the data. Internal forces arise from the reparameteriza-
tion terms.

3.1 External Forces
We begin by considering the force acting on a single triangle be-
fore giving the actual equations for the net force on a vertex in the
mesh. Following the balloon strategy, we define the force acting on
a triangleT of our mesh as being along the normal of the triangle,
with a sign and a magnitude depending on the surface integral of
the distancesd between the triangle and the actual zero-contourC:

FT = nT/AT
∫
x∈T

d(x,C) dx

wherenT is the triangle normal andAT is the area ofT . The inte-
gral of the distance across the face can be computed exactly in the
volume setting, since we assume that the distance varies linearly
across a given voxel. In practice this is overkill and we use a much
cheaper sampling criterion. Each triangle face is randomly sampled
with a uniform distribution whose area density depends on the total
area of the triangle. First, however, we compute the variance of the
distance for a small number of uniform samples in order to short
circuit unnecessary sampling. This results in quicker force com-
putations, while preserving the quality of the approximation. Note
that the minimum bound on the discretization rate is of the order of
a voxel size, since everything is assumed to vary linearly within a
voxel. Therefore, we use the following simple sampling strategy:

Temporarily quadrisect the triangleT into four small trianglesti
For eachti

E[d] += di = DistanceAtBarycenter(ti)
E[d2] += (di)
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mT = 4 //the number of samples
//calculate the varianceVT [d] of these distances
VT [d] =E[d2] - (E[d])2

If VT [d] ≥ δ
mT = AT /avf //avf = area of a voxel face
For eachmT
//stochastically sample the triangle with a uniform distribution
E[d] += DistanceAtRandomSample(T )

The variance of a discrete set of distances is computed in the stan-
dard wayVT [d] = E[d2] − E[d]2, whereE denotes the mean of
its argument. A more sophisticated method, using fully adaptive
sampling depending on variance, can be derived, but this simple
approach has proved sufficient and has the advantage of being very
efficient. The final net force on a triangle is be given by the above
mean of the distances

FT = nTE[d].

The solver requires forces acting on vertices. To arrive at these we
use the above sample points to compute integrals for each vertex
by integrating over all incident triangles, weighting each sample
point with its respective barycentric coordinate. Every sample point
within a triangle contributes to the force integrals associated with
its corner points as follows:

1/mT nT d(xi, C) φj(xi)
1/mT nT d(xi, C) φk(xi)
1/mT nT d(xi, C) φl(xi)

wherexi ∈ T is the sample location;(j, k, l) are the corners ofT ;
and theφ give the barycentric coordinate ofxi with respect toj, k,
andl respectively. Effectively we are using piecewise linear finite
elements and stochastic sampling to evaluate the associated inte-
grals. In the implementation we simply iterates over all triangles
and accumulates the integrals at each vertex.

With this scheme, faces will tend to move towards the zero-
contour. If the mesh is coarser than the small details of the zero-
contour, it will settle in an optimal position, smoothing the details.
The finer the mesh is, the better the fit will be. As mentioned in [23],
we also noticed that vertices tend to align with sharp features on the
zero-contour.

3.2 Internal Forces
Internal forces are usually added as a regularizing term, to guide the
minimization to a desirable local minimum. In our approach inter-
nal forces are mainly used to ensure good aspect ratios for the faces
and to keep the sampling across the surface smoothly distributed.
Usually, springs of zero rest length and identical stiffness are used
to keep sample points from clustering locally and ensure uniform
sampling [23]. Instead we definereparameterizationforces which
act similarly, but only along the local parameter plane, not in space.

Decoupling Smoothing and Reparameterization In re-
cent work on mesh smoothing [48, 9], the Laplacian operator has
been used extensively to denoise triangulated surfaces, using the
approximation:

L(xi) =
1

m

∑
j∈N1(i)

xj − xi,

wherexj are the neighbors of vertexxi, andm = #N1(i) is the
number of these neighbors (valence). Note that this definition is
equivalent to springs with zero rest length whenever the valence
is constant throughout the mesh. This Laplacian of the mesh at a
vertex can be broken down into two orthogonal components:

• a component normal to the surface, creatingshape smoothing

• and a component in the tangent plane, fairing theparameteriza-
tion of the mesh.

The normal vector to the surface can be found easily by normalizing
the curvature normal vectorK [9, 10]:

K(xi) =
1

2A
∑

j∈N1(i)

(cotαij + cotβij)(xi − xj). (1)

For arbitrary connectivity meshes numerical evidence shows that
no spurious drifting artifacts appear when the surface is modified
only in the direction ofK [9]. This decomposition into normal
and tangential components separates motion into one component
changing shape and one changing the parameterization. We are
only interested in the latter.

Reparameterization as Tangential Laplacian Smoothing
In our context shape smoothing would actagainst the external
forces trying to fit the initial data. Thus we are only interested in
the tangential motion of Laplacian smoothing in order to improve
the quality of the discretization. This reparameterization force is
defined as

T(xi) = L(xi)− (L(xi) · n)n, (2)

wheren is the normalizedK of Equ. 1. We also use the second
Laplacian operatorL2 [27, 9] to ensure a smoother variation of
sampling rate over the surface, and suppress the normal component
in the same way. By proceeding as described, we keep internal and
external forces distinct, thus simplifying parameter choices.



3.3 Refinement Strategy
After an optimal solution has been found for a given mesh, we eval-
uate a refinement criterion over each triangle. Any triangle failing
the criterion is quadrisected. This hierarchy is naturally maintained
in a forest of quadtrees, one tree for each original coarsest level
triangle. The solver is run anew after refinement.

The two criteria used to determine if a triangle should be re-
fined are curvature and variance of distance. If the variance of the
distance samples for a given triangle is too high, the surface un-
derneath this particular triangle must have high curvature, and the
triangle requires refinement. Using a user supplied thresholdεV all
trianglesT with VT [d] ≥ εV are refined.

Additionally we also test the curvature of the current mesh to en-
sure good discretization in highly curved areas. If the three vertices
of a triangle have too high a curvature compared to the area of the
triangle, our solver refines the triangle to better adapt to the local
geometry. For generality, we add a condition to deal with sharp
features in the volume data: we invalidate the test on curvature if
the variance of sampled distances is too small. Refinement will be
avoided if we are already describing the surface adequately. There-
fore, our second refinement criterion for a triangleT = (xi, xj, xk)
can be written:

(|K(xi)|+ |K(xj)|+ |K(xk)|)AT ≥ εκ and VT [d] ≥ εV
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whereεκ, the maximum discrete curvature, is a user-defined value.
The choice ofεV /10 seems reasonable in all our tests, but could be
defined by the user if needed, depending on the prevalence of high
frequency detail in the iso-surface. It is worth noting thatεV can
be viewed as a smoothing factor. For example if the user wants a
smoothed version of the surface they can setεV to a higher num-
ber and the system will stop after reaching a solution with fewer
triangles to approximate the surface.

3.4 Overall Solver Algorithm
Once forces have been computed for every vertex in the current
mesh, vertex positions are updated through an explicit dynamics
step:

x
(t+δt)
i = x

(t)
i + Fxiδt

advancing the mesh in time until the approximation error does not
decrease further. When advancing the mesh a restriction must be
placed on the time stepδt to satisfy the Courant condition: the
velocity of change must not travel faster than the minimum detail in
the system. This condition is simple to compute in our system and
asδt = me/Mf , whereme is the minimum edge length andMf

the maximum force. After a step is taken the refinement criteria are
evaluated and quadrisection is performed as needed. Subsequently
we solve again until convergence and continue this process until the
user supplied error criteria are satisfied.

The behavior of the solver is controlled by the relative weight-
ings of distance and reparameterization forces. We have found a
factor of 2 in favor of the distance forces to work reliably for a
wide variety of data sets. Similarly time steps ofδ = 0.1 and er-
ror thresholds ofεκ = 15 andεV = 10−4 have proven to work
well without the need for tuning. To make the error criteria scale
invariant we consider the object to occupy the unit cube.

4 Results
We have applied our algorithm to a variety of datasets and com-
pared the results with MC reconstructions as “ground truth.” Some
of these are shown in Figure 9.

The top sequence illustrates the case of a MRI dataset (1283)
which was segmented through a level set method. Construction of
the coarsest mesh (186 triangles) took.5 seconds. The intermediate

Figure 9: Reconstructions performed with our algorithm on MRI
datasets (top and bottom) and a 3D scanner generated distance
function (middle). The coarsest mesh is shown on the left followed
by an intermediate adaptive mesh and a final result.

mesh contains 4810 triangles, while the final mesh has 21360 tri-
angles. Using Metro [4] to compare our reconstruction against the
MC mesh (58684 triangles) we find a relativeL2 error of1.8∗10−4

(Fig. 10). The surface is a topological sphere, but requires fairly
fine levels of refinement near the ears, attesting to the performance
of our solver in the presence of rapidly changing local geometric
complexity.

Figure 10: Comparison between our algorithm output and a MC
mesh. The relativeL2 error between these is1.8 ∗ 10−4.

The middle sequence shows an extraction from a 3D scanner
generated distance function [7]. The topology of the feline is non-
trivial containing numerous handles in the tail region (Fig. 11) and
demonstrates the performance of our coarsest level mesh extraction
and topology discovery algorithm. It also demonstrates the ability
of our solver to resolve fairly fine detail such as the mounting posts
on the bottom of the paws. Triangle counts are 3412, 13412 and
46996 respectively (MC: 72685) for an error of3.3∗10−4 . Coarsest
mesh extraction time was.34 seconds on a volume of158∗74∗166
voxels.

Finally the bottom row shows another MRI dataset of a mouse



Figure 11:Tail section of feline showing nontrivial topology. MC
extraction on the right, adaptive semi-regular mesh on the left.

embryo which was segmented with a level set method. The sur-
face has several handles (near both front paws) and numerous
concavities. All were resolved successfully. Triangle counts are
1030, 4086, and 26208 respectively (MC: 129670) with an error of
6 ∗ 10−4. Coarsest level extraction took.78 seconds on a volume
of 256 ∗ 1282. Typical solver times are on the order of a few sec-
onds for the initial meshes increasing to 4 to 5 minutes for the final
reconstructions.

5 Conclusion and Future Work
We have demonstrated a novel algorithm for the capture of iso-
surfaces in the form of hierarchical, adaptive semi-regular meshes.
It is based on a new approach to construct a coarsest mesh with
guaranteed topology approximation of the iso-surface using surface
wavefront propagation to discover the topology and ensure that it is
represented faithfully. In a subsequent solver step, we use a novel
explicit reparameterization force employing tangential components
of the first and second Laplacian of the mesh. Thus we do not have
to trade off fidelity to the original data and uniqueness of the solu-
tion. The resulting meshes have a natural multiresolution structure
since they are semi-regular, making them suitable for a variety of
powerful digital geometry processing algorithms.

In order to avoid self-intersection problems during the solution
process we have so far relied on coarsest meshes which resolve
the geometry reasonably well to begin with. It would be desirable
to start with the coarsest possible (in the topological sense) initial
mesh and counteract any self-intersection problems in the solver
itself. Other interesting areas for future work include:
• investigation of the use of multiresolution representations of the

volume [16];

• optimization of the solver including adaptive time stepping
strategies and automatic selection of the relative weighting for
the reparameterization forces;

• application of the topological graph to irregular meshes to code
topology.
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