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Figure 1: A point cloud with 4,100 scattered samples (a), its triangulation with 7,938 triangles (b), remesh with
80 × 48 quadrilaterals (c), and smooth approximation with a 23× 15 bicubic tensor product B-spline surface (d).

ABSTRACT

The problem of reconstructing smooth surfaces from
discrete scattered sample points arises in many fields
of science and engineering and the data sources in-
clude measured values (laser range scanning, meteo-
rology, geology) as well as experimental results (engi-
neering, physics, chemistry) and computational values
(evaluation of functions, finite element solutions, nu-
merical simulations). We describe a processing pipeline
that can be understood as gradually adding order to a
given unstructured point cloud until it is completely
organized in terms of a smooth surface. The individ-
ual steps of this pipeline are triangulation, remeshing,
and surface fitting and have in common that they are
much simpler to perform in two dimensions than in
three. We therefore propose to use a parameterization
in each of these steps so as to decrease the dimension-
ality of the problem and to reduce the computational
complexity.
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1 INTRODUCTION

The problem we consider can be stated as follows: given
a set V = {vi}i=1,...,n of points vi ∈ IR3, find a surface
S : Ω → IR3 that approximates or interpolates V . If
the points are totally unstructured and not associated
with any additional information, then the first step
usually is to triangulate the points, in other words, to
find a piecewise linear function S that interpolates V .
This introduces a first level of organization as it defines
the topological structure of the point cloud. For exam-
ple, the eight vertices of a cube could be triangulated
by four triangles forming two parallel squares or by
twelve triangles forming a closed surface (see Figure 2).
In Section 3 we discuss how this problem can be solved
by constructing a parameterization of V and then us-
ing a standard triangulation method in two dimensions.
Note that certain acquisition methods (e.g. laser range
scanning) provide connectivity information that allows
to use simpler triangulation methods.

Figure 2: The triangulation of a point cloud is topo-
logically ambiguous.



Figure 3: Uniform, shape preserving, and most isometric parameterization of the triangulation in Figure 1 (b).

The process of remeshing can be considered a second
level of organization as it approximates a given un-
structured triangulation with another triangulation
that has a certain regularity, namely subdivision con-
nectivity. Again, the remeshing process is relatively
simple to perform in two dimensions and in Section 4
we show how it can be done once a parameterization of
the triangulation has been determined. We also men-
tion remeshing with regular quadrilateral meshes as
this leads to an efficient indirect smooth surface ap-
proximation scheme.

Approximating the given scattered samples with a
smooth surface can be viewed as the third level of orga-
nization as the surfaces we consider are twice differen-
tiable and so to say regular everywhere. We review
the classical variational approach to smooth surface
fitting in Section 5 and compare it to the previously
mentioned indirect method. A parameterization of the
data points is also needed in this third step to set up
the smooth approximation problem and we therefore
start by explaining how to compute such parameteri-
zations.

2 PARAMETERIZATION

Parameterizing a point cloud V is the task of finding
a set of parameter points ψ(vi) ∈ Ω in the parameter
domain Ω ⊂ IR2, one for each point vi ∈ V . A parame-
terization of a triangulation T with vertices V = V (T )
is further said to be valid if the parameter triangles
ti = [ψ(vj), ψ(vk), ψ(vl)] which correspond to the tri-
angles Ti = [vj , vk, vl] of T form a valid triangulation
of the parameter points in the parameter domain, i.e.
the intersection of any two triangles ti and tj is either
empty, a common vertex, or a common edge.

A lot of work has been published on parameterizing
triangulations over the last years and the most effi-
cient methods can be expressed in the following com-
mon framework. Their main ingredient is to specify for
each interior vertex v of the triangulation T a set of
weights λvw , one for each vertex w ∈ Nv in the neigh-
bourhood of v, where Nv consists of all vertices that
are connected to v by an edge. The parameter points

ψ(v) are then found by solving the linear system

ψ(v)
∑

w∈Nv

λvw =
∑

w∈Nv

λvwψ(w). (1)

The simplest choice of weights is motivated by a physi-
cal model that interprets the edges in the triangulation
as springs and solves for the equilibrium of this network
of springs in the plane [12]. These distance weights are
defined as

λvw = λwv = ‖v − w‖−p

and yield uniform, centripetal, or chord length parame-
terizations for p = 0, p = 1/2, or p = 1. Note that these
weights are positive and thus always give valid trian-
gulations as shown by Tutte [23] for uniform and later
by Floater [7] for arbitrary positive weights. However,
these parameterizations fail to have a basic property.
If the given triangulation is flat, we would expect the
parameterization to be the identity, but it turns out
that this cannot be achieved for any choice of p.

Another choice of weights that gives parameteri-
zations with this reproduction property are harmonic
weights [3, 20],

λvw = λwv = cotαv + cotαw,

where αv and αw are the angles opposite the edge con-
necting v and w in the adjacent triangles (see Figure 4).
But these weights can be negative and there exist tri-
angulations for which the harmonic parameterization
is not valid.
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Figure 4: Notation for defining various weights.



Figure 5: A point cloud with 1,042 samples and the
connectivity graph for k = 16.

The shape preserving weights [4] were the first known
to result in parameterizations that meet both require-
ments, but also the mean value weights [6]

λvw = (tan(γv/2) + tan(βw/2))/‖v − w‖

do. In addition, they depend smoothly on the vi.
The drawback of these linear methods is that they

require at least some of the boundary vertices to be
fixed and parameterized in advance and it is not al-
ways clear how this is done best. Non-linear meth-
ods that overcome this limitation at the expense of
higher computation complexity include most isometric
parameterizations [15] as well as an approach that min-
imizes the overall angle deformation [22]. Examples of
parameterizations are shown in Figures 3, 7, and 9.

3 TRIANGULATION

Floater and Reimers [8] observed that linear parame-
terization methods can also be used for parameterizing
point clouds as they do not require the points to be
organized in a globally consistent triangulation. The
only information needed to compute distance weights
is a set of neighbours Nv for each interior vertex v, and
determining the harmonic, shape preserving, and mean
value weights additionally requires Nv to be ordered.

A simple choice of Nv is the ball-neighbourhood

N r
v = {w ∈ V : 0 < ‖v − w‖ < r}

for some radius r. But especially for irregularly dis-
tributed samples, taking the k nearest neighbours as
Nv has proven to give better results. Typical values of
k are between 8 and 20.

Both choices of Nv can be used to define an ordered
neighbourhood by projecting all neighbours into the
least squares fitting plane of v∪Nv and considering the
Delaunay triangulation of the projected points [8, 9].

Figure 6: Reconstructed triangulation before and after
optimization.

Once these neighbourhoods are specified, it is possible
to apply one of the linear parameterization methods
to determine parameter points ψ(vi) and use one of
the standard methods for triangulating points in two
dimensions, e.g. the Delaunay triangulation, to find a
triangulation S of the ψ(vi). Finally, a triangulation
T of V is obtained by collecting all triangles [vj , vk, vl]
for which [ψ(vj), ψ(vk), ψ(vl)] is a triangle in S.

Figures 5–7 show an example where a point cloud
was parameterized using 16 nearest neighbours and
chord length parameterization. The resulting trian-
gulation was optimized by using an edge flipping algo-
rithm that minimizes mean curvature [2].

Figure 7: Chord length parameterization of the point
cloud in Figure 5 and Delaunay triangulation.

4 REMESHING

Point cloud parameterizations usually have very low
quality because the connectivity graph that is used for
generating them does not reflect the properties of the
surface from which the samples were taken well. There-
fore the reconstructed surface in Figure 6 looks crinkly.
But after optimization the techniques from Section 2
generate high quality parameterizations which can be
further used for other reconstruction methods.



Figure 8: Triangulation with 21,680 triangles and reg-
ular remesh with 24,576 triangles.

One important aspect of surface reconstruction is to
approximate a given triangulation T with a new trian-
gulation T ′ that has regular connectivity. This process
is commonly known as remeshing and motivated by the
fact that the special structure of the new triangulation
allows to apply very efficient algorithms for displaying,
storing, transmitting, and editing [1, 18, 19, 21, 25].
The special structure required by these algorithms is
subdivision connectivity, which is generated by itera-
tively refining a triangulation dyadically.

With a parameterization at hand, remeshing can
easily be performed in the two dimensional parame-
ter space Ω. The simplest approach is to choose Ω
to be a triangle and iteratively splitting this triangle
into four by inserting the edge midpoints. The ver-
tices of this planar remesh are then lifted to IR3 to
give the spatial remesh T ′ by using the parameteriza-
tion in the following way. First, the barycentric co-
ordinates with respect to the surrounding parameter
triangle [ψ(vj), ψ(vk), ψ(vl)] are computed for each ver-
tex w of the planar remesh. Then the corresponding
vertices vj , vk, vl of T are linearly interpolated using
these coordinates to give the vertex w′ of the spatial
remesh.

Figure 9: Shape preserving parameterization and quad-
rilateral remesh of the triangulation in Figure 6.

The quality of the spatial remesh can be improved by
smoothing the planar remesh in the parameter domain
[17]. For example, the remesh in Figure 8 was gener-
ated by iteratively applying a weighted Laplacian to
the vertices of the planar remesh where the weights
depended on the areas of the triangles in the spatial
remesh so as to give a remesh with uniformly sized
triangles in the end. This remeshing strategy is not
limited to triangulations with subdivision connectiv-
ity and can also be used to approximate triangulations
with regular quadrilateral meshes [16] (see Figure 9).

5 SURFACE FITTING

Parameterizations are also important for smooth sur-
face reconstruction. Given a function space S that is
spanned by k basis functions Bj : Ω → IR3, the task is
to find the coefficients cj of an element F =

∑
j cjBj

of S such that F (ψ(vi)) ≈ vi for all i = 1, . . . , n.
The quadrilateral remeshing approach allows for a

very efficient solution of this problem, namely interpo-
lation at the vertices w′ of T ′. This indirectly approx-
imates the initially given vertices and requires to solve
only a few tridiagonal linear systems if cubic tensor
product B-splines are used as basis functions [16].

Figure 10 compares the result of the indirect method
to that of the classical variational approach [5, 14, 24].
The idea of the latter is to minimize a weighted com-
bination E(F ) + µJ (F ) of the �2 approximation error

E(F ) =
n∑

i=1

‖F (ψ(vi)) − vi‖2

and a quadratic smoothing functional J : S → IR. The
surfaces in Figures 10 and 11 were obtained by using
the simplified thin plate energy [10, 11, 13]

J (F ) =
∫

Ω

F 2
uu + 2F 2

uv + F 2
vv du dv.

Figure 10: Indirect and smooth least squares approxi-
mation of the point set in Figure 5.



µ = 10−2 µ = 10−4 µ = 10−6

Figure 11: Triangulation with 3,374 vertices and surface reconstruction with different smoothing factors.
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