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Abstract

Form factors are used in computer graphics and radiative heat transfer to describe
the fraction of di�usely reected light or radiation leaving one surface and arriving
at another. They are a fundamental geometric property used for computation. Many
special con�gurations admit closed form solutions. However, the important case of
the form factor between two polygons in three space has had no known closed form
solution. We give a closed form solution for the case of general (planar, convex or
concave, possibly containing holes) polygons. The solution is non-elementary since it
involves dilogarithms.



In the analysis and computation of radiative heat transfer and global di�use illumi-
nation in computer graphics the form factor (also referred to as angle factor) plays a
central role. It describes the fraction of radiation di�usely emitted from one surface
reaching another surface and thus summarizes the geometric relationship between
two surfaces in the absence of occlusions. The fast and accurate computation of form
factors is of considerable practical import. Textbooks on radiative heat transfer give
derivations for many special con�gurations which admit closed form solutions (see for
example [9, 16, 12]). However, up until now the case of the form factor between two
general polygons has had no known closed form solution. Since polygons are a very
common modeling primitive such a formula would be very useful.

In the �rst use of radiosity in computer graphics Goral et al. [5] use numerical con-
tour integration to compute form factors between polygons. Cohen and Greenberg [2]
used the hemi-cube method to rapidly evaluate form factors using existing computer
graphics hardware. Nishita and Nakamae [14] as well as Baum et al. [1] used an exact
solution for the form factor between a di�erential surface element and a polygon to
estimate the form factor between �nite surfaces. Baum reports greatly reduced er-
rors over earlier methods in particular near singularities. Wallace et al. [18] used ray
tracing and closed form expressions to estimate form factors between �nite surfaces.
Most recently Hanrahan et al. [6] used a hierarchical algorithm which evaluates the
form factor integrals adaptively.

The history of computing the amount of light impinging on a di�usely reecting
surface from some light source is very long. A closed form expression for the form
factor between a di�erential surface element and a polygon had already been found
by Lambert in 1760 [10]. Lambert proceeded to derive the form factor for a number
of special con�gurations among them the form factor between two rectangles sharing
a common edge with an angle of 90 degrees between them. He writes about the latter
derivation:

Although this task appears very simple its solution is considerably
more knotted than one would expect. For it would be very easy to write
down the di�erential expression of fourth order, which one would need to
integrate four fold; but the highly laborious computation would �ll even
the most patient with disgust and drive them away from the task. The
only simpli�cation which I was able to achieve was to reduce the expres-
sion to a second order di�erential, using the above theorems [formula for
di�erential surface element to polygon form factor], with which I was able
to perform the computation.

Lambert also formulates the reciprocity principle in his theorem 16 and uses form
factor algebra to compute unknown factors from known ones. The �rst use of Stokes'
theorem [17] to solve for the form factor between two arbitrary surfaces can be found

1



a

a
2A

dx2 dA1

1θ

1A

dx1

dA2

θ2

r a
a

Figure 1: Geometry for the form factor between two surfaces A1 and A2. The dif-
ferential surface elements are shown as d ~A1 and d ~A2, making the angles �1 and �2
respectively with the connecting vector ~r. The boundary elements are shown as d~x1
and d~x2.

in a book by Herman in 1900 [7]. Through two applications of Stokes' theorem he
reduces the form factor between two arbitrary surfaces to a double contour integral.
He uses this result to give the form factor for two parallel quadrilaterals in an exercise.
A similar derivation can be found in an article by Fock in 1924 [3]. Fock proceeds
by applying the formulation to elliptical disks for which he derives a closed form
solution. In 1936 Moon [13], aware of Fock's work, derives closed form solutions for
a number of specialized con�gurations. In the same year, Gershun [4] puts various
photometric quantities on a vector calculus footing and gives an especially elegant
derivation of the double contour integration using di�erential forms. More recently
Sparrow [15] in 1963 used the double contour form to derive closed form solutions for
the case of parallel disks and parallel quadrilaterals. However, none of these sources,
or any since, that we are aware of, has given a closed form solution of the form factor
between two general polygons.

In this paper we derive a closed form solution for the form factor between two
general polygons. In Part 2 we give a short review of the well known double contour
integration formula for form factors which is the basis of our closed form. This is
followed in Part 3 by a detailed derivation of the symbolic integration of the double
contour integral. In Part 4 we apply the method to a simple con�guration as an
example of its use. The Appendix lists all expressions which need to be computed to
give the �nal answer.
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Today the double contour integration method is a standard tool which is derived
and taught in many textbooks (e.g. Hottel and Saro�m [8], Love [12], Sparrow and
Cess [16]). In the derivation below we will closely follow the treatment of Gershun [4]
and Love [12].

The form factor describes the geometric relationship between two surfaces and is
de�ned by

�A1F12 =
Z
A1

Z
A2

cos �1 cos �2
a

k~r12k2 dA2 dA1 (1)

where �1;2 are the angles between the normal vector of the respective surface and a
radius vector, ~r12 = �~r21, which goes from a point on surface 1 to a point on surface
2 (see Figure 1). The notation A1 is used for both the surface 1 and its area. Noting
that

cos �1 cos �2
a

k~r12k2 dA2 dA1 = �(~r12 � d ~A1)(~r12 � d ~A2)
a

k~r12k4 = �(~r12 � d ~A1)~r12
a

k~r12k4 � d ~A2

=
1
a

2
r� ~r12 � d ~A1
a

k~r12k2 � d ~A2

we can at once apply Stokes' theorem,
R
A(r� ~F ) � d ~A =

R
@A

~F � d~s, to Equation 1

�A1F12 =
1
a

2

Z
A1

Z
@A2

~r12 � d ~A1
a

k~r12k2 � d~x2 = 1
a

2

Z
A1

Z
@A2

~r21 � d~x2
a

k~r21k2 � d ~A1 (2)

Given the latter form, we may immediately apply Stokes' theorem again since

~r21 � d~x2
a

k~r21k2 = r ln k~r21k � d~x2 = r� (lnk~r21k d~x2)

giving

�A1F12 =
1
a

2

Z
A1

Z
@A2

r� (ln k~r21k d~x2) � d ~A1

=
1
a

2

Z
@A1

Z
@A2

ln k~r21k d~x2 � d~x1

=
1
a

4

Z
@A1

Z
@A2

ln(~r � ~r) d~x2 � d~x1 (3)

where we dropped the subscript on ~r21 since we only need its magnitude.
In the above derivation we have not yet taken advantage of the fact that we only

want to consider polygons. A classic result already known to Lambert [10] gives the
form factor between a di�erential surface element and a polygon and follows directly
from Equation 2

�Fd12 =
1
a

2

Z
@A2

~r21 � d~x2
a

k~r21k2 � d ~A1 =
1
a

2

X
Ei2@P2

~i � d ~A1
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where ~i is a vector normal to the plane spanned by Ei and the location of d ~A1 with
magnitude given by the angle subtended by Ei. Baum et al. [1] used the latter form
to decrease the error in their radiosity algorithm particularly near singularities. In
the case of the form factor between two �nite areas (Equation 3) we �nd for two
polygons P1 and P2 the expression d~x2 � d~x1 to be a constant for each pair of edges
from the two polygons. In this way the total integral decomposes into a sum over all
pairwise combinations of edges

�AP1FP1P2 =
1
a

4

X
Ei2@P1
Ej2@P2

Z
Ei

Z
Ej

ln(~r � ~r) d ~Ej � d ~Ei

Each one of the latter integrals expands asZ
Ei

Z
Ej

ln(~r �~r) d ~Ej �d ~Ei = cos 6aEiEj

Z li

0

Z lj

0
ln
� h
~xi(t)� ~xj(s)

i
�
h
~xi(t)� ~xj(s)

i�
ds dt

where li;j are the lengths of Ei;j respectively and ~xi(t) and ~xj(s) are parameterizations
of the edges.

As we have seen in the previous section all that is needed now is to give a closed form
solution for integrals of the general formZ c2

0

Z c0

0
ln f(s; t) ds dt (4)

where c0 and c2 are the lengths of the edges over which the given double contour
integral is taken (for a complete listing of all constants introduced in the follow-
ing derivation refer to the Appendix). The bi-quadratic form which arises from the
expansion of the dot product is given by

f(s; t) = s2 + c1st+ t2 + c3s+ c4t+ c5

= s2 + (c1t+ c3)s+ (t2 + c4t+ c5)

= s2 + c6(t)s+ c7(t)

with c5 � 0. For later use we also introduce the symbol

fs(s; t) =
d
a

ds
f(s; t) = 2s+ (c1t+ c3)

A special case arises immediately if the two line segments under consideration
actually lie in a plane. In this case f(s; t) can be factored into two bi-linear forms

f(s; t) = (ei�s+ ei�t+
pa
c5)(e

�i�s+ e�i�t+
pa
c5)

= h(s; t)�h(s; t)
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where i is the imaginary unit and �; � are suitably chosen angles. That this decom-
position is possible is most easily seen by considering the two lines in question in
a specially chosen coordinate frame. Let both lines be in the s-t plane with one of
the lines starting at the origin parallel to the s axis. In this frame, the dot product
measuring the length of ~r is given by

0
B@ s

0
0

1
CA �

0
B@ a+ t cos 
b+ t sin 

0

1
CA

2

= (s� (a+ t cos ))2 + (b+ t sin )2

= (s� ei t� (a� ib))(s� e�i t� (a+ ib))

with a2 + b2 = c5 and  giving the slope of the second line.
Given the above decomposition of f into two factors h and �h, the integral of

Equation 4 can be written asZ c2

0

Z c0

0
ln f(s; t) ds dt = 2Re

�Z c2

0

Z c0

0
lnh(s; t) ds dt

�

= Re

 
h(s; t)2
a

ei(�+�)

�
lnh(s; t)� 3

a

2

�!�����
s=c0 ;t=c2

s=0;t=0

where Re() denotes the real part of a complex number.
From now on we will assume that the lines do not share a plane. In particular this

implies that they do not intersect. Since f(s; t) measures the distance between the
two lines we have f(s; t) > 0 for all (s; t) 2 R

2. For any �xed but arbitrary value of
s the quadratic polynomial f(s; t) (in t) will have a pair of complex conjugate roots
with non-zero imaginary part.

For later reference we �rst consider the following integrals. Let q(x) = ax2+bx+c
and d =

pa
4ac� b2, thenZ y

ln q(x) dx =
q0(y)
a

2a
ln q(y)� 2y +

d
a

a
tan�1

q0(y)
a

d
+ �G

=: G(q)(y) (5)Z y

x ln q(x) dx =

 
y2
a

2
+

c
a

2a
� b2
a

4a2

!
ln q(y)

�y(ay� b)
a

2a
� bd
a

2a2
tan�1

q0(y)
a

d
+ �H

=: H(q)(y) (6)

for some integration constants �G;H . Notice that for polynomials q with non-real
roots, d will be real.

We �rst evaluate the integral with respect to s using Equation 5 setting �(t) =qa
4c7(t)� c26(t) 2 R

Z c0

0
ln f(s; t) ds = G(f(:; t))(s)

����
s=c0

s=0
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=
fs(s; t)
a

2
ln f(s; t)� 2s+ �(t) tan�1

fs(s; t)
a

�(t)

�����
s=c0

s=0

(7)

Continuing with the integration of the �rst two terms on the right hand side of
Equation 7|using the integrals in Equation 5 and 6|with respect to t we arrive at

Z c2

0

 
fs(s; t)
a

2
ln f(s; t)� 2s

! �����
s=c0

s=0

dt

=
�
s+

c3
a

2

�
G(f(s; :))(t) +

c1
a

2
H(f(s; :))(t)

����s=c0 ;t=c2
s=0;t=0

� 2c0c2

a

a
c13

qa
c13
a

�c13

c13+c2
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c13+c2
a
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R
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Figure 2: Geometry of the change of variable t = �c13x2�c13
a

1�x2 , which maps the point

t = 0 onto x =
qa

c13
a

�c13
and the point t = c2 onto x =

qa
c13+c2
a

�c13+c2
. In the �gure c13 is

assumed to be in the upper complex half plane. If it is in the lower half plane the
geometry is simply mirrored along the R axis. The crucial observation which allows
the above construction is that Im (c13) 6= 0 and c2 > 0.

To integrate the remaining term of Equation 7 with respect to t we �rst perform
a change of variable. Consider the term �(t), which we may rewrite as follows

�(t) =
qa
4c7(t)� c26(t)

=
qa
4(t2 + c4t+ c5)� c21t

2 � c1c3t� c23

=
qa
(4� c21)t

2 + (4c4 � c1c3)t+ (4c5 � c23)

=
qa
c10t2 + c11t+ c12 =

qa
c10(t+ c13)(t+ �c13)
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with c13 =
c11�

pa
c2
11
�4c10c12
a

2c10
= c11
a

2c10
� c14
a

2
, since �(t) > 0. The latter also implies that

c10 > 0 and c14 purely imaginary. Performing the change of variable t = �c13x
2�c13
a

1�x2
we

get

�(x) =

pa
c10(�c13 � c13)x
a

1� x2
=

pa
c10c14x
a

1� x2
=

c15x
a

1� x2

dt =
2c14x
a

(1 � x2)2
dx

fs(s; x)
a

�(x)
=

(c1�c13 � c3 � 2s)x2 � (c1c13 � c3 � 2s)
a

c15x

=
�c16(s)x

2 � c16(s)
a

c15x

Since the inverse function of our substitution (square root) is multivalued, care must
be taken to use the correct endpoints for the integration path. The substitution
projects the real line segment [0; c2] onto a segment of the unit circle (see Figure 2).
The correct endpoints are those which are in the same half plane of the complex
plane (either positive or negative imaginary part). Below we use the positive square
root for concreteness. Notice that c15 is purely imaginary. With this substitution the
integral of the last term on the right hand side of Equation 7 becomes

Z c2

0
�(t) tan�1

fs(s; t)
a

�(t)

�����
s=c0

s=0

dt

= 2c14c15

Z qac13+c2
a

�c13+c2qa
c13
a

�c13

t2
a

(1 � t2)3
tan�1

�c16(s)t
2 � c16(s)
a

c15t

������
s=c0

s=0

dt (8)

Before proceeding we take advantage of the fact that tan�1 z = 1
a

2i ln
1+iz
a

1�iz + k� for
some integer k 2 Z to yield

tan�1
�c16(s)t

2 � c16(s)
a

c15t
=

1
a

2i
ln
c15t�

a

ic16(s)t
2 � ic16(s)
a

c15t+
a

ic16(s)t2 + ic16(s)
+ k(s)�

=
1
a

2i
ln

(t� c17(s))(t� c18(s))
a

(t+ c17(s))(t+ c18(s))
+
2k(s) + 1
a

2
�

with c17=18(s) =
�c15�

pa
c2
15
�4jc16(s)j2
a

�2
a

ic16(s)
. Since our integration path has angular extent less

than � we can choose k(s) 2 f�1; 0; 1g. We de�ne two more integrals M

Z y t2
a

(1 � t2)3
dt =

y
a

4(y2 � 1)2
+

y
a

8(y2 � 1)
+

1
a

16
ln
y � 1
a

y + 1
+ �M

=: M(y)
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and L

Z y t2
a

(1� t2)3
ln(b+ t) dt

=
1
a

16

0
B@ �b
a

(b+ 1)2
ln(y � 1) � b
a

(b� 1)2
ln(1 + y) +

2(b � y)
a

(b2 � 1)(y2 � 1)

+

 
2(b+ y)(1 + by) ((b� y)2 + (by � 1)2)
a

(b2 � 1)2(y2 � 1)2
+ ln

(1� y)(1� b)
a

(1 + y)(1 + b)

!
ln(b+ y)

+Li2

�
1 � y
a

1 + b

�
� Li2

�
1 + y
a

1� b

�1CA+ �L

=: L(b)(y)

Here �L;M are integration constants and

Li2(z) =
1X
1

zk
a

k2

is the dilogarithm (see [11]), closely related to the logarithm ln 1
a

1�z
=
P1

1
zk
a

k
. Its

series representation is absolutely convergent in the unit disk. Using the functional
relationship

Li2(z) =
��2
a

6
� ln2(�z)
a

2
� Li2(z

�1)

the dilogarithm is de�ned in the entire complex plane. E�cient code for the evaluation
of the dilogarithm function can be found in most special function libraries, e.g. fn from
the mail server at netlib@research.att.com.

With these functions in hand we are �nally equipped to express the entire integral
of Equation 4 in closed form

Z c2

0

Z c0

0
ln f(s; t) ds dt

=
��
s+

c3
a

2

�
G(f(s; :))(t) +

c1
a

2
H(f(s; :))(t)

� ������
s=c0 ;t=c2

s=0;t=0

� 2c0c2

+ c14c15

�
�(2k(s) + 1)M(t)

�i
n
L(�c17(s))(t) + L(�c18(s))(t)� L(c17(s))(t)� L(c18(s))(t)

o � ������
s=c0 ;t=

qa
c13+c2
a

�c13+c2

s=0;t=
qa

c13
a

�c13

8



a

a Z

Y

X
θ

a

b a
a

Figure 3: Geometry for two rectangles sharing a common edge with an enclosing
angle of �.

a

a 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
θ

0.2

0.4

0.6

0.8

1.

F12

a
a

Figure 4: The form factor for the geometry in Figure 3 as a function of � for edge
ratios l = a

a

b
of :2, :4, :6, :8, and 1:0.

9



The derivation above has been checked formally with a computer algebra system.
However, in order to verify all constants and clarify any practical issues of the com-
putation we have also implemented our formula. The latter point deserves some
elaboration. Since we are required to go to the complex plane in order to symboli-
cally integrate Equation 8, the fact that the involved functions are multivalued needs
to be addressed explicitly. In particular, the branchcut of the complex logarithm
needs to be placed away from the integration path. This does not place an undue
burden on the code but requires careful implementation to avoid erroneous results.

As a simple example which requires the full power of our formula, we have com-
puted the form factor between two equal width rectangles sharing an edge (see Fig-
ure 3) with an arbitrary angle � between them. The literature gives a closed form
solution for the case � = �=2 (e.g. in [16]). Figure 4 shows the form factor for this
con�guration as a function of � for various aspect ratios l = a

a

b
and a length of 1 for

the common edge. The results are in agreement with a quadrature of the original
integral computed to su�cient accuracy.

We have shown that the form factor between two general polygons does admit a closed
form solution. This solution is non-elementary in that it involves the dilogarithm
function. The closed form can be used to advantage when checking other techniques
or in situations in which standard numerical techniques are ill-conditioned, such as
near singularities of the integrand.

There has been a long history of computing closed form expressions for form
factors starting with Lambert in 1760. Since then there has been much progress in
economizing the integrals involved, most notably the reduction from four dimensions
to two with the contour integral method. The literature lists many special cases for
which closed form solutions exist, but hitherto no solution had been given for general
polygonal con�gurations. The present paper closes this gap.

We would like to thank John Richardson and Woody Lichtenstein for their many
valuable suggestions of \tricks" to crack the integral. The �rst author would also like
to thank HLRZ and its Scienti�c Visualization Group for their support. This work
was also partially funded by a grant from the National Science Foundation, CCR
9207966.
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Before listing all the expressions to be computed we �rst de�ne four auxiliary functions

L(b)(y) =
1
a

16

0
B@ �b
a

(b+ 1)2
ln(y � 1)� b
a

(b� 1)2
ln(1 + y) +

2(b� y)
a

(b2 � 1)(y2 � 1)

+

 
2(b+ y)(1 + by) ((b� y)2 + (by � 1)2)
a

(b2 � 1)2(y2 � 1)2
+ ln

(1� y)(1� b)
a

(1 + y)(1 + b)

!
ln(b+ y)

+Li2

�
1 � y
a

1 + b

�
� Li2

�
1 + y
a

1� b

�1CA
M(y) =

y
a

4(y2 � 1)2
+

y
a

8(y2 � 1)
+

1
a

16
ln

y � 1
a

y + 1

G(q)(y) =
q0(y)
a

2a
ln q(y)� 2y +

d
a

a
tan�1

q0(y)
a

d

H(q)(y) =

 
y2
a

2
+

c
a

2a
� b2
a

4a2

!
ln q(y)� y(ay� b)
a

2a
� bd
a

2a2
tan�1

q0(y)
a

d

where q(x) = ax2+bx+c is some arbitrary quadratic polynomial and d =
pa
4ac� b2.

Given two edges we �rst compute the bi-quadratic form parameterizing the dis-
tance between the two edges as a function of s and t. Let Ei and Ej be parameterized

by ~xi(t) = ~pi + t~di and ~xj(s) = ~pj + s~dj with k~di;jk = 1, respectively. We have

c0 = kEjk
c1 = ~di � ~dj
c2 = kEik
c3 = �2~dj � (~pi � ~pj)
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c4 = 2~dj � (~pi � ~pj)

c5 = k~pi � ~pjk2
c10 = 4 � c2

1

c11 = 4c4 � c1c3

c12 = 4c5 � c2
3

c13 =
c11 �

qa
c2
11
� 4c10c12
a

2c10

c14 =

qa
c2
11
� 4c10c12
a

c10
c15 =

pa
c10c14

c16(s) = c1c13 � c3 � 2s

c17(s) =
�c15 +

qa
c215 � 4jc16(s)j2
a

�2aic16(s)

c18(s) =
�c15 �

qa
c215 � 4jc16(s)j2
a

�2aic16(s)
With these in hand we can compute the integral for a pair of edges

I(Ei; Ej) :=
Z c2

0

Z c0

0

ln f(s; t) ds dt

=
��
s+

c3
a

2

�
G(f(s; :))(t) +

c1
a

2
H(f(s; :))(t)

� ������
s=c0 ;t=c2

s=0;t=0

� 2c0c2

+ c14c15

�
�(2k(s) + 1)M(t)

�i
n
L(�c17(s))(t) + L(�c18(s))(t)� L(c17(s))(t)� L(c18(s))(t)

o � ������
s=c0 ;t=

qa
c13+c2
a

�c13+c2

s=0;t=

qa
c13
a

�c13

in terms of which the form factor for two polygons is given by

FP1P2 =
1
a

4�AP1

X
Ei2@P1
Ej2@P2

c1ij I(Ei; Ej)

Mathematica [19] code which implements the general case of our closed form for
arbitrary polygons is available from the authors through ps@cs.princeton.edu.

13


