
Normal Bounds for Subdivision-Surface Interference Detection

Eitan Grinspun Peter Schr¨oder

Caltech

Figure 1: Collision detection in a thin-shell simulation.Given a control mesh of a bent tube, our algorithm identifies interfering regions on
the limit surface up to a user-specified precision. Above, we have resolved interference with progressively increasing precision.

Abstract

Subdivision surfaces are an attractive representation when model-
ing arbitrary topology free-form surfaces and show great promise
for applications in engineering design [5, 6] and computer anima-
tion [10]. Interference detection is a critical tool in many of these
applications. In this paper we derive normal bounds for subdivision
surfaces and use these to develop an efficient algorithm for (self-)
interference detection.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computational Geometry

and Object Modeling - Constructive solid geometry (CSG), Geometric algorithms, Hi-

erarchy, Splines; I.6.m [SIMULATION AND MODELING]: Miscellaneous - Col-

lision detection; G.1.2 [NUMERICAL ANALYSIS]: Approximation - Spline and

piecewise polynomial approximation

Additional Keywords: Subdivision Surfaces, Multiresolution Surfaces, Self-

interference, Gauss map, Loop’s Scheme

1 Introduction

Interference detection algorithms are vital for simulation and an-
imation. As examples, consider cloth simulation [2, 8, 26] and
deformable object animation [31, 32]. These applications must de-
tect and correct self-interference and interference between surfaces.
In constrained settings, when (a) the motion of objects can be ex-
pressed as a closed function of time, (b) the configuration of objects
is simple or highly symmetrical, or (c) objects undergo only poly-
nomial deformation, interference detection can be handled in sim-
ple ways through specific geometric optimizations. However, in a
general setting, with complex deformations—such as wrinkling of
cloth or buckling of aluminium—interference detection is difficult
and time-consuming [8, 33].

Our particular interest in interference detection was born of a
larger project—we simulate structures governed by the thin-shell
equations, and produce physically realistic animations of crushing,
crumpling, wrinkling, and other non-linear phenomena (see Fig-
ure 1). Previous publications on the Subdivision Element Method,

by Cirak and other members of our team, describe the benefits of
using subdivision surfaces in this setting [5, 6].

Subdivision surfaces are now widely deployed in many computer
graphics and geometric modeling tasks (for an overview see [34]).
They are desirable for many modeling, animation, and simulation
applications, in part because they efficiently and robustly generate
smooth surfaces from an arbitrary topology control mesh. However,
(self-)interference detection for subdivision surfaces has never been
explored and we present the first algorithm of its kind for this task.
Our algorithm targets a general setting with arbitrary deformations.
In particular, we make no assumptions on the

• motion of the surface,

• symmetry or simplicity of the surface configuration, or

• type of deformation applied to the surface.

To appreciate various algorithmic choices we must distinguish
betweeninterference/collision detection and surface intersection.
Collision detection askswhether a surface coincides/intersects with
itself or other surfaces. In contrast, surface intersection involves
finding the actual intersection curves. In this paper we describe a
hybrid approach tailored to simulation applications. The algorithm
produces a list of interfering regions up to some user-specified res-
olution (see the red marked patches in Figures 1, 11, and 12), but it
does not trace the exact intersection curve. Our thin-shell simulator
uses this algorithm to place contact forces between abutting or inter-
penetrating surfaces. While the algorithm caters to simulations, its
mathematical foundation is widely applicable. Our approach and
math derivations apply to all popular subdivision schemes. We
shall make our discussion more concrete by focusing on Loop’s
scheme [23].

Contributions We introduce:

• a new framework for collision and self-collision detection of
subdivision surfaces undergoing arbitrary deformations, with
optimizations specifically for self-collision detection;

• techniques to bound the direction of surface normals of subdivi-
sion surfaces. In particular, we address irregular patches, which
cannot be treated with approaches reported for splines.

1

Our bounding technique is useful for a number of algorithms in con-
structive solid geometry [3], machining and milling [16, 18], simu-
lation [5], animation [10], and trimming [22]. It is also applicable
to surface area approximations, silhouette curve computations, and
rendering [18]. We will however not pursue these different applica-
tions and instead focus on the basic bound construction and its use
in (self-)interference detection.

1.1 Review of Related Work

Interference detection has been studied extensively (see the excel-
lent survey of Lin and Gottschalk [21]). Most previous work deals
with polygonal meshes and spline surfaces. A complete treatment
for subdivision surfaces has not appeared in the literature. Unfor-
tunately, subdivision surface interference tests cannot be based in
a straightforward way on polygonal interference algorithms run on
the control mesh (see Figure 2).

Figure 2: Control mesh check is insufficient.Two self-intersecting
control meshes (left) and (not shown at same scale) associated limit
surfaces (right). A control mesh may be self-intersecting while the
associated limit surface may (top) or may not (bottom) intersect.

The collision detection problem is very difficult. GivenN sep-
arate objects, there areO(N2) potential pair-wise collisions. Fur-
thermore, if the objects are patches of a surface, then (typically)
there areO(N) pairs of adjacent objects whose shared seam should
not be considered an interference region (see Figure 3). Most ap-
proaches employ a hierarchical bounding volume structure to avoid
expensive intersection tests between well separated parts of the sur-
face or multiple surfaces. Algorithms that do not specifically opti-
mize self-interference queries perform poorly (if at all): they rely
on spatial separation between non-interfering objects, and such sep-
arations do not exist between adjacent patches.

Our algorithm to detect (self-) interference for subdivision sur-
faces employs and builds on a number of previous ideas.

Figure 3: Self-interference check.The detection algorithm should
ignore the seam between patches.

Collision Detection for Subdivision Surfaces was dis-
cussed by DeRose et al. [10] as part of a comprehensive treatment of
character animation. As their approach is based on pointwise sam-
pling of the subdivision surface at its control vertices, it may miss
(self-)collisions. Also, they do not discuss optimizations specific
to self-interference. In contrast, our approach will not miss (self-
)collisions, and is particularly efficient for self-interference queries.

Collision Detection for Spline Surfaces Hughes et al. [17]
describe an accurate algorithm for objects undergoing polynomial
deformation. The algorithm uses linear programming, hierarchies,
sweep-and-prune [7], and loop detection [15] to check for interfer-
ence of B-spline (and B´ezier) surface patches. The regular patches
of a subdivision surface are splines, and many of these ideas could
be applied if the surface deformation is polynomial.

Collision Detection for Polygonal Surfaces Volino and
Thalmann present an algorithm for self-collision detection of
polygonal surfaces [33]. They create a patch hierarchy, use surface
curvature tests to rule out self-intersections, and use a combination
of surface curvature and bounding box tests to rule out intersection
between pairs of subsurfaces. Provot [26] confirms the soundness
of this approach for polygons. Ponamgi et al. [25] present an algo-
rithm for exact collision detection between non-convex polyhedral
models. They describe ahierarchical sweep and prune strategy
which allows them to exploit temporal coherence. Although we
could incorporate this approach, we found that our patch hierarchy
(Section 2.2 and Figure 5) effects similar pruning if each node in
the hierarchy has a small number of children.

Interval Arithmetic has been used successfully for collision de-
tection with many objects undergoing deformable motion in com-
plex environments. Snyder et al. [29] described such a method, but
it does not address self-collision nor subdivision surfaces. Extend-
ing this work to handle self-collision would involve a development
akin to that presented in Section 3.1, in which we use interval anal-
ysis to bound normal variation over a surface patch.

Figure 4: The Gauss map,(u, v) �→ (fu × fv)/‖fu × fv‖2, maps
every point on the surface of an orientable 2-manifold to its unit
normal vector [4]. An illustrative surface patch (left) and the im-
age of its Gauss map on the unit sphere (right). Each point on the
surface (arrow’s tail, left image) has an associated surface normal
(arrow, left image) that corresponds to a point on the unit sphere
(arrow’s head, right image).

Surface Intersection Hohmeyer presents a general framework
for robust surface-surface intersection based on loop detection [16].
His work covers quadric, parametric, as well as implicit surfaces.
Krishnan and Manocha [20] treat algebraic and NURBS surfaces
using a lower-dimensional formulation. Other notable work was
published by Ma [24] and by Sederberg [27]. A commonality
amongst all of these approaches is their use of bounds for the Gauss
map of a surface patch (see Figure 4). We derive an interval bound

2

for the Gauss map of a subdivision surface, allowing us to leverage
much of the collision detection work based on such bounds.

Our approach extends the framework presented by Thalmann
and Volino [33], which effectively treats self-interference detection
of arbitrary topology polygonal meshes. There are several possi-
ble ways to extend this framework to smooth subdivision surfaces.
The na¨ıve approach, detecting interference of the surface control
mesh, leads to erroneous results (see Figure 2). An approximate ap-
proach, for applications that tolerate missed or false collisions, is to
first discretize the limit surface into a polygonal mesh and then de-
tect interference of the mesh. With this approach, our novel Gauss
map bound can be used to guide the discretization and to bound the
discretization error. The more precise approach we adopt applies
the interference detection problem to the smooth limit surface, as
in prior treatment of spline patches. We retain the general structure
presented in [33] but instead of working with polygonal meshes we
treat smooth surfaces of arbitrary topology.

2 Algorithm

In this section we describe the interference detection problem and
present our solution.

The limit surface of subdivision is trivially parameterized over
the control mesh triangles, implying a decomposition of the surface
into coarse triangularlimit patches. Since a refined control mesh
describes the same limit surface, the decomposition of the surface
may consist of arbitrarily fine triangular limit patches. We use the
termspatch andsubpatch (in contrast withlimit patch) to denote a
connected group of limit patches.

2.1 The Collision Detection Problem

The goal of the algorithm is to identify all self-intersecting limit
patches, as well as all pairs of intersecting limit patches. The user
provides a tolerance oracle that decides whether a pair of inter-
secting limit patches should be subdivided into finer limit patches
in order to isolate the interfering regions more precisely (see Fig-
ures 1, 11, and 12).

2.2 Overview of Our Algorithm

We represent the limit surface at different resolutions via a hierar-
chy of patches (see Figure 5):

1. every level of the hierarchy represents the entire surface as a
disjoint set of patches,

2. each patch is a disjoint union of its subpatches,

3. the root of the hierarchy is a single patch comprising the entire
surface,

4. the leaves are limit patches, and

5. conceptually, every leaf patch has an infinite hierarchy of de-
scendant limit patches, corresponding to the hierarchical pa-
rameterization induced by recursive subdivision of the control
mesh.

See Garland et al. [12] for an excellent treatment of such hierar-
chies. To detect interference, we begin at the root patch of the hi-
erarchy, and examine progressively finer subpatches at higher in-
dexed levels. If we are able to guarantee that a patch does not self-
intersect, we prune the search—we do not consider descendants of
that patch. The detection algorithm has two significant routines:

Figure 5: Hierarchy. Illustrative example of a patch hierarchy
whose leaves are limit patches. Note that level numbers increase
towards finer levels and that the coarsest level of any surface con-
sist of a single patch, i.e., the union of all limit patches.

DetectPairwiseInterference accepts a pair of input patches,
and returns a list of interfering regions between the patches.
An interference region is represented as a pair of limit patches,
where each input patch contributes one subpatch to the pair.
This routine may make recursive calls to itself.

DetectSelfInterference accepts a single patch as input, and re-
turns a list of interfering regions within the patch. An interfer-
ence region is represented by a pair of limit patches belonging
to the input patch. This routine may make recursive calls to
itself, and it may callDetectPairwiseInterference.

2.3 Discussion of Pseudo-Code

We now turn to the definition of the detection algorithm given in
Figure 6. In this discussion,SP(a) denotes the immediate sub-
patches of patcha.

DetectPairwiseInterference accepts a pair of patches{a, b}
and returns an interference list, each element an interfering pair
{ca, cb} of limit patches withca ∈ SP(a) andcb ∈ SP(b). The
algorithm is recursive: first, we attempt to rule out interference be-
tweena and b (Section 2.4); if interference cannot be ruled out,
we check if both patches are sufficiently flat to be approximated as
polygons. If so, interference is checked between the polygonal ap-
proximations. Otherwise we subdivide one of the patches, sayb,
into its constituent subpatches, and recursively check for interfer-
ence betweena and every subpatch ofb.

DetectSelfInterference accepts a patcha and returns an inter-
ference list containing interfering pairs{c1, c2} of limit patches
with c1, c2 ∈ SP(a). The algorithm is recursive: first, we at-
tempt to rule out the possibility of self-interference in patcha
(Section 2.4). If self-interference cannot be ruled out, we sub-
divide patch a into its constituent subpatchesSP(a), find all
self-interferences within each subpatch via a recursive call to
DetectSelfInterference, and find all interferences between pairs
of subpatches through a call toDetectPairwiseInterference.

3

algorithm DetectSelfInterference(a)
if RuleOutSelfInterference(a) return: ∅
else return:

⋃
c ∈SP(a)

DetectSelfInterference(c)

⋃
⋃

c1, c2 ∈SP(a)

DetectPairwiseInterference(c1, c2)

// Assume level(b) ≥ level(a).
algorithm DetectPairwiseInterference(a,b)
if RuleOutPairwiseInterference(a,b) return: ∅

else if a and b sufficiently flat
if poly. approxs. of a and b interfere

return: {a, b}
else return: ∅

else if a not sufficiently flat
return:

⋃
ca ∈SP(a)

DetectPairwiseInterference(b, ca)

else // b not sufficiently flat
return:

⋃
cb ∈SP(b)

DetectPairwiseInterference(a, cb)

Figure 6:Pseudo-code for interference-detection algorithm.

2.4 Details

The routines described above use bounds on the volume of a patch
(“spatial bounds”) and the Gauss map of a patch (“normal bounds”)
when they attempt to rule out interference between non-adjacent
and adjacent patches respectively. Let us examine each test in more
detail:

Figure 7: Self-interference test.Sufficient conditions that a patch
does not self-intersect are the existence of a separating plane be-
tween the origin and the image of Gauss map of the patch (top left),
and the absence of interference in the projection of the patch con-
tour onto the separating plane (top right). The intuition behind
these criteria is as follows. The first ensures that the patch does not
self-interfere due to bending (bottom left), while the second ensures
that the patch does not self-interfere due to planar stretching and
shearing (bottom right).

The test to rule out interference between two patches
depends on whether or not the patches are adjacent on the limit sur-
face (we present an efficient adjacency test below). If the patches

are not adjacent, then spatial bounds such as axis-aligned bound-
ing boxes (AABBs) or oriented bounding boxes (OBBs) are used
to rule out interference [7, 13]. The bounding box for a limit patch
is built by bounding its control mesh, taking advantage of the local
convex hull property. Note that repeated refinement of the control
mesh of a patch yields progressively tighter spatial bounds. How-
ever subdivision is costly. In practice three steps of refinement are a
good compromise for AABBs. The bounding boxes of the remain-
ing patches are built by bounding the union of bounding boxes of
their subpatches.

The test to determine if two patches are adjacent is de-
fined as follows: given two patchesa and b, with level(a) ≥
level(b), then the patches are adjacentiff b is an ancestor of some
neighbor ofa. This reflects the notion that patches are adjacent
iff they are connected, regardless of the location of each patch in
the hierarchy. To make this efficient the data structure representing
a patch includes a list of all its immediate neighbors at the same
level.

The test to rule out interference between two adjacent
patches follows from the observation that the union of the two
patches is itself a proper connected patch. Simply put, we apply the
self-interference test to the union of the two patches.

The test to rule out self-interference is similar to the test
given by Volino [33]. Two conditions must hold for ruling out self-
intersection. First, there must exist a plane separating the image of
the Gauss map from the origin (see Figure 7, top left). Secondly,
the projection of the patch boundary onto this plane must lie in the
plane and have no self-intersections (Figure 7, top right). For many
applications it is reasonable to ignore the second condition; this has
been independently noted by Provot [26] and Thalmann [8, 33], and
we have confirmed this in our application to thin-shell simulation.

We now consider the check for a separating plane in more detail.

3 Self-Interference

The self-interference test requires that two conditions be met. Sec-
tions 3.1 discusses the first condition (Figure 7, top left) and Sec-
tion 3.6 the second condition (Figure 7, top right). We shall focus
on Loop’s scheme [23]. All the results extend to the Catmull-Clark
scheme and other popular schemes. In particular, our results rely on
diagonalizing the extended subdivision matrix. This is not possible
for some schemes, such as the Doo-Sabin scheme [30], but the re-
sults are easily extended to handle matrices which have non-trivial
Jordan blocks. We have used this extension to handle valence three
vertices in Loop’s scheme.

Our final computations require interval analysis. Aninterval
A = [a, b] is a closed subset ofR with the usual arithmetic op-
erations on intervals [1]. In the following, interval quantities are
typeset in Sans Serif (e.g.,F(X), Φi(Ω)), matrix and vector values
in boldface (e.g.,f(x), C), and scalar values in lowercase Roman
(e.g.,f(x), ci, φi(v, w)).

3.1 Gauss Map Image Restricted to Hemisphere

As shown in Figure 7, to rule out self-interference we must prove
the existence of a separating plane between the origin and the im-
age of the Gauss map of the patch. An equivalent condition is that
the set of all oriented normal vectors of the surface is contained in a
non-degenerate cone (i.e., a cone with half-angle less thanπ/2). To
determine if this cone exists, we derive analytic bounds on the nor-
mal vectors of a limit patch. The bounds we present are guaranteed
to converge during subdivision.

4

When a patch has three regular corners (for Loop’s scheme, these
are vertices of valence six), we refer to the patch asregular; oth-
erwise we refer to it asirregular. Regular patches define quartic
box spline surfaces, and previous work has established effective ap-
proaches for bounding their Gauss map [16]. The literature does not
address irregular patches; that is our focus.

To simplify the problem (without loss of generality), we shall:
(a) consider only a single limit patch, (b) assume that at most one
corner of any patch is an irregular vertex, and (c) apply a rigid-body
transformation to the patch such that the irregular corner lies at the
origin and the associated surface normal is collinear with thez-axis.
Patches, i.e., groups of limit patches, have their Gauss map bounded
by the union of the bounds over their constituent limit patches. The
condition that a limit patch may have at most one irregular corner
is easily satisfied by a single global subdivision step.

We begin by formulating expressions for tangent vectors of the
irregular patch. In Section 3.3 we proceed to bound the tangent
directions and then the normal directions of the patch.

Figure 8: Loop subdivision.One step of local subdivision around
the irregular patch. On the left the parametric layout of an irregular
patch. Applying the subdivision matrix S1, for example, produces
the control points of the subpatch T1

1 (shaded triangle).

3.2 Scaled Tangent Vectors

Consider one step of subdivision around the irregular control tri-
angle, as shown in Figure 8. Quadrisection produces three regular
triangles and one irregular triangle. Letp be theN × 3 vector of
3D control points at the coarsest level around the irregular triangle
(Figure 8 top left), and letp1 be theN × 3 vector of 3D control
points in a similar neighborhood at the next level. LetS be the
N × N subdivision matrix, such thatp1 = Sp. Similarly define
S1 (respectivelyS2 andS3) as a rectangular subdivision matrix that
relatesp to the vector of control pointsq1

1 (respectivelyq1
2 andq1

3)
around triangleT 1

1 (respectivelyT 1
2 andT 1

3). Note that after one
step of subdivision, three quarters of the limit patch are defined by
quartic box splines.

Our derivation is based on observing the eigenstructure of the
subdivision matrix; this idea can be traced back to Doo and
Sabin [11]. Assume thatS is non-defective (if this assumption
is relaxed a similar argument follows), and decompose the control
vectorp with respect to the eigenbasis{xn}, n = 0 .. N − 1, of S:

p = x0c0 + x1c1 + x2c2 + . . . ,

wherexn is anN × 1 column eigenvector andci is a1× 3 vector.
We write thexi in order of non-increasing magnitudes of the eigen-
valuesλi. For simplicity, we further assume thatλ1 = λ2 = λ and
λ0 > λ > |λ3|.

Suppose that the projection into the eigenbasis results in exactly
one non-zero coefficientci, so thatp = xici. One subdivision
step produces the regular triangleT1

1 surrounded by control points
q1

1 = S1p = S1x
ici. Sincexi is an eigenvector ofS, each step of

subdivision scales the control points by the eigenvalue: thejth step

of subdivision generates the control points aroundTj
1 given by

qj
1 = S1S

j−1p = S1λ
j−1
i xici = λj−1

i q1
1. (1)

Recall that for a regular patch the limit surface is a box spline,
hence for the patch defined byq1

1 we can express the limit sur-
face ass(u, v)|T1

1
= B(2u, 2v − 1)q1

1, whereB(u, v) is a row
vector of box spline basis polynomials defined over the unit tri-
angle T0. Furthermore, using the scaling relation given above,
we can express the limit surface of the patch defined byqj

1 as
s(u, v)|

T
j
1

= λj−1
i B(2ju − 1, 2jv)q1

1.

Theu-tangent of patchs(u, v)|
T

j
1

, defined as the vector function
∂

∂u
s(u, v)|

T
j
1

, describes its tangents in theu parameter direction.

Recall that we want to bound thedirection of the tangent vectors,
and not the magnitude. We multiply the tangent vector by the posi-
tive scalar(2λ)1−j , noting that this does not alter its direction. The
resulting scaled tangent vector is

hu(u, v)
∣∣∣T j

1
= (2λ)1−j ∂

∂u
s(u, v)

= 2 (λi/λ)j−1 Bu(2ju − 1, 2jv)S1x
i

︸ ︷︷ ︸
φi

u(u,v)

∣∣∣∣T j
1

ci (2)

whereBu(u, v) = ∂
∂u

B(u, v), and φi
u(u, v) : R

2 �→ R is a
partial derivative of thescaled eigenbasis function corresponding
to the eigenvectorxi (with its restriction overT j

1 defined above).
φi

u(u, v) is also defined overT j
2 andT j

3 (by an analogous deriva-
tion), thus it is well-defined over the entire domainT0. Conse-
quently, the scaledu-tangent has the simple expressionhu(u, v) =
ciφ

i
u(u, v). A similar derivation establishes the expression for the

scaledv-tangent,hv(u, v) = ciφ
i
v(u, v).

Up to this point, we have assumed that the expansion of the con-
trol vectorp in the eigenbasis ofS is p = xici (with fixed i). We
now lift this restriction, and treat the case of the general expansion
p =

∑N−1
i=0 xici. Since the subdivision operatorS, the differen-

tiation operator ∂
∂u

, and multiplication by a scalar(2λ)1−j are all
linear operators, the scaled tangents are given by

hu(u, v) =

N−1∑
i=1

ciφ
i
u(u, v) hv(u, v) =

N−1∑
i=1

ciφ
i
v(u, v).

The terms corresponding toi = 0 have been dropped because they
are always zero.

3.3 Analytic Bound of Surface Normals

We want to bound the scaled normal,hu(u, v) × hv(u, v). The
desired quantityhu × hv is a 3D vector with scalar interval com-
ponents, and it can be interpreted geometrically as an axis-aligned
bounding box around the heads of the scaled normal vectors. We
would like the bound to be tight if we apply it to a sufficiently fine
limit triangle; if the bound is not sufficiently tight, we shall sub-
divide the limit triangle and apply the bound separately to each
sub-triangle. The shape of a sufficiently fine limit triangle with
eigen-coefficientsci is governed by the subdominant eigenterms of
its eigenbasis expansion. Hence it is critical to find an expression
for hu × hv that is tight when{c1, c2} � |ci|, i > 2.

Let us rewritehu(u, v) = hs.d.
u (u, v) + hh.o.t.

u (u, v) as the sum
of the subdominant termshs.d.

u (u, v) = c1φ
1
u(u, v) + c2φ

2
u(u, v)

and higher order termshh.o.t.
u (u, v) =

∑N−1
i=3 ciφ

i
u(u, v). Sim-

ilarly we rewrite,hv(u, v) = hs.d.
v (u, v) + hh.o.t.

v (u, v). By the

5

distributive property of the cross product, the scaled normal is the
sum of four terms, which we shall bound individually and then add
using interval arithmetic:

hu × hv = (hs.d.
u × hs.d.

v) + (hs.d.
u × hh.o.t.

v) +

(hh.o.t
u × hs.d.

v) + (hh.o.t
u × hh.o.t.

v). (3)

The first term is a bound over the functionhs.d.
u (u, v) ×

hs.d.
v (u, v) = φ1×2(u, v)(c1 × c2), where φ1×2(u, v) =

φ1
u(u, v)φ2

v(u, v) − φ2
u(u, v)φ1

v(u, v). We precompute the scalar
interval boundΦ1×2 on φ1×2(u, v) overT 0, and at runtime evalu-
atehs.d.

u × hs.d.
v = Φ1×2(c1 × c2).

To compute the remaining terms we compute interval bounds for
the intermediate factors:

hs.d.
u = c1Φ

1
u + c2Φ

2
u hs.d.

v = c1Φ
1
v + c2Φ

2
v

hh.o.t.
u =

∑N−1
i=3 ciΦ

i
u hh.o.t.

v =
∑N−1

i=3 ciΦ
i
v,

whereΦi
u andΦi

v are precomputed interval bounds onφi
u(u, v) and

φi
v(u, v) over T 0 (we shall develop these bounds in Section 3.4).

Taking interval cross products of the above factors the three remain-
ing terms are formed.

The proof of convergence follows from the observation that
|a × b| ≤ |a||b|, and hence the three terms in Equation 3 that
involve hh.o.t.

u andhh.o.t.
v vanish during subdivision. The remain-

ing term,Φ1×2(c1 × c2), is the product of a scalar interval and
a vector almost parallel to thez-axis. If the scalar intervalΦ1×2

does not include some finite neighborhood around zero then inter-
val arithmetic will produce a tight bound on the (z-axis) direction,
hu(u, v) × hv(u, v).

3.4 Analytic Bound on Partial Derivatives of
Scaled Eigenbasis Functions

In this section we describe how to precompute the scalar intervals
Φi

u andΦi
v, which boundφi

u(u, v) andφi
v(u, v) over T0. These

functions depend on the eigenvectors ofS (and hence on the valence
of the irregular corner vertex), but since they are independent of the
control vectorp, these intervals are precomputed.

It is easy to boundφi
u(u, v) over the domainT1 = T 1

1 ∪T 1
2 ∪T 1

3 ,
since the scalar function is a polynomial over each of the three sub-
domains. Elementary Calculus yields the analytic boundΦi

u |T1 =
range

[
φi

u(u, v), (u, v) ∈ T 1
]
. To extend this bound over the en-

tire domainT0, we observe a scaling relation onφi
u(u, v) that is

evident from Equation 2:

range
[
φi

u(u, v), (u, v) ∈ T j
]

=

(λi/λ)j−1 range
[
φi

u(u, v), (u, v) ∈ T 1
]
, (4)

whence it follows directly that the bound over the entire domainT0

is the union of an infinite sequence of bounds over the domainsTj :

Φi
u =

∞⋃
j=1

Φi
u |T j =

∞⋃
j=1

(λi/λ)j−1 Φi
u |T1 . (5)

Let us examine how this expression can be simplified. We examine
three cases:i = 0, i ∈ {1, 2}, andi > 2.

• i = 0 We assume thatx0 = [1, 1 . . . 1]T , as this is required
for the subdivision surface to be affine invariant [34]. Then by
the partition of unity property of the box spline basis,Bx0 is
unity andBux

0 is zero, and from Equation 2 we conclude that
φ0

u(u, v) is zero everywhere andΦ0
u = [0, 0].

• i ∈ {1, 2} Sinceλ1 = λ2 = λ, the geometric scaling factor
λi/λ is unity. In this case, our simplified expression isΦ1

u =
Φ1

u |T1 , i.e., the bound overT 1 is a bound overT0.

• i > 2 In this case, the geometric scaling factor
λi/λ is less than unity, hence the sequence of intervals
(λi/λ)j−1 Φi

u |T1 vanishes asj → ∞ and the intervalΦi
u =[

min
(
0, Φ1

u |T1
)
, max

(
0, Φ1

u |T1
)]

is a conservative bound
on φi

u(u, v) over T0. Simply put, we compute a bound over
T 1, and extend that bound to include zero.

Recall that in Equation 2 we scaled the tangents by(2λ)1−j . We
now see the effect: the scaling factor (in Equation 5) is|λi/λ| ≤ 1,
i > 0; consequently the infinite geometric sequence converges. If
the tangents were not scaled, the scaling factor would be2λi > 1
for some valences and the union over the infinite sequence would
not converge. The second consequence of scaling the tangent vec-
tors is that the scaling factor is now unity fori ∈ {1, 2}, hence the
bound on the subdominant eigenbasis functions is tight.

The scalar interval boundΦ1×2 on φ1×2(u, v) overT 0 is com-
puted in the same manner. It is easy to boundφ1×2(u, v) over
the domainT 1, since the scalar function is a polynomial over each
of the three subdomains. Elementary Calculus yields an analytic
bound, and since all the component eigenbasis functions are associ-
ated with subdominant eigenvalues, the functionφ1×2(u, v) obeys
a scaling relation analogous to Equation 4, with the scaling factor
unity. Hence the bound onφ1×2(u, v) over the domainT1 serves
as the boundΦ1×2 over the domainT0.

j→∞

all scaling factors
less than unity

j→∞

subdominant scaling factor unity
all others less than unity

j→∞

some scaling factors
greater than unity

j→∞
bound is

never tight

without rotation
of coordinate system

j→∞
bound is

eventually tight

with rotation
of coordinate system

Figure 9: Tight bounds. Top row:Axis-aligned bounding boxes
provide tight bounds for axis-aligned directions, favoring rotation
of the coordinate system. Bottom row: We scale the tangent vec-
tors by (2λ)1−j , which results in normalized scaling factors |λi/λ|
for the eigenfunctions; consequently the tangent vectors are well-
behaved near the irregular vertex (middle). If we omit this scaling,
the tangent vectors may be poorly behaved (left and right).

3.5 Obtaining Tighter Bounds

We noted previously thathu and hv can be interpreted as axis-
aligned bounding boxes (AABBs) around heads of the tangent vec-
tors. Let us examine the consequence of using an AABB as a
bounding volume. If we want to express a bound over a single point,
or an axis-aligned line segment, the bounding box is tight. How-
ever, if we want to express a bound over an arbitrary line segment,
an AABB may have significant slack and present a poor choice.

It is important for us to have a tight bound on the tangents (and
normals) when the patch is flat. Note that when the patch is flat, the
heads of all the normals vectors will lie along some line segment.
An AABB will give a tight bound on the normal direction only
if this line segment is aligned with an axis. This explains why we

6

rotate the control mesh so that the normal vector associated with the
irregular vertex is aligned with thez-axis. The detection algorithm
examines progressively smaller neighborhoods around the irregular
patch; eventually all the normal vectors in the neighborhood will be
sufficiently aligned with thez-axis.

3.6 Self-Interference of Projected Contour

We now turn our attention to the second condition in the interfer-
ence test: The projection of the patch contour onto the separating
plane is a curve, and it must not self-interfere. In essence, this self-
intersection problem for curves is a lower-dimensional version of
the self-intersection problem for patches.

Consider applying a rigid-body transformation to the separat-
ing plane and the patch such that the separating plane is thexy-
plane. A projection onto the separating plane amounts to setting
the z-coordinate to zero. Since the subdivision operator affects
each coordinate independently, we note that the projected contour
is a subdivision curve defined by the projection of part of the con-
trol mesh onto the plane. Specifically, only the control triangles
in the two-ring of the contour are required to define the limit con-
tour. Self-interference detection for the contour curve is simply a
lower-dimensional instance of the problem addressed in this paper.

One simplification that is possible in the curve setting is that in-
stead of bounding normal directions, we may bound tangent direc-
tions, since for curves the normal and tangent directions are related
by a rotation throughπ/2. Also note that in this two-dimensional
setting, the self-interference test analogous to that described in
Section 2 has only one condition: the tangent directions must be
bounded by a wedge with half-angle less thanπ/2.

4 Results

We have implemented the algorithm described in the previous sec-
tion as part of a larger system for thin-shell simulation. We derived
and then tabulated the bounds on the eigenfunction derivatives,Φi

u,
Φi

v, and normals,Φ1×2, in a symbolic algebra package. At run time
the bounds, together with the left eigenvectors needed to compute
the eigencoefficientsci, are loaded. The boundshu × hv are then
computed as described in Section 3.3.

We ensure that the half-angle of our normal bounding cone is
tight within π/180 (1 degree) of the exact infinite series of bounds
over the regular subpatches. To achieve this, we subdivide a given
patch by multiplying the eigencoefficients by the eigenvalues (with-
out actually altering the mesh data structure), extracting the three
regular subpatches (by multiplying the eigencoefficients by the
right eigenvectors and using picking matrices), and finally comput-
ing a normal bound over the regular subpatches. If the half-angle
of the normal bounding cone over the entire patch is not within
π/180 of the corresponding half-angle over the three regular sub-
patches, we recursively bound the normals of the irregular subpatch
until the bound is tight enough; at this point, we have conceptually
subdivided the original patch into a set consisting of regular sub-
patches and a single small irregular subpatch (without altering the
mesh data structure). The bound over the original patch is com-
puted as the union of the bounds over this set of subpatches.

Since the bound over regular subpatches is based on known
methods for splines, and the number of iterations is typically only
four or five, our bounding method runs within a small constant fac-
tor of the speed of methods based on splines. In practice only a
small portion of the total detection time is spent in functions asso-
ciated with irregular limit patch Gauss map bounds. Consequently
there is very little runtime difference between a spline patch inter-
ference detection code and our more general subdivision surface
interference detection code. Our prototype implementation uses
rudimentary bounding primitives: spatial bounds are represented as

Figure 10: Experimental verification of self-interference test.In
relatively flat regions large patches, i.e., groups of limit patches, are
determined to be without self intersection based on the Gauss map
criterion. Each such group is indicated with a single color. Note
that the groups are smaller in extent near high curvature areas.

axis-aligned bounding boxes, and normal bounds are represented
by normal cones [18]. Researchers have established that the perfor-
mance of collision detection algorithms benefits greatly from us-
ing tighter spatial and normal bounds. In particular we believe that
our approach would benefit from using ShellTrees [19] or QuOSPO
trees [14] as spatial bounds, since they have superior convergence
properties compared to AABBs. Similarly we would benefit from
using convex pyramids [9, 28] to represent normal bounds. For
the examples we present in this paper, the collision detection time
ranges from 0.1 s to 30 s.

Figure 10 demonstrates our algorithm’s ability to rule out self-
interference. The coloring of the mannequin, lyase molecule energy
field, and bent tube was generated by traversing down the patch
hierarchy, and pruning the traversal at those patches for which we
ruled out self-interference; the colors delineate those patches of the
hierarchy that did not require further subdivision. Note that in flat
regions of the surface (such as the base and top of the tube, and the
forehead of the mannequin) the extent of the patches is relatively
large, whereas in regions with high curvature (such as the nose and
ear of the mannequin, and more notably some peaks in the lyase
model), the extent of the patches is rather small. These examples
demonstrate the dependence of our self-interference criterion on the
curvature of the surface patch.

We have used our algorithm to find self-interfering regions of
various models, ranging from geometric curiosities to physically
simulated objects. Figures 1, 11, and 12 show the interference re-
gions we found for three models, with progressively higher pre-
cision (recall that the user may provide an oracle that determines
whether a pair of interfering limit patches should be subdivided fur-
ther to increase precision). The bent tube model was generated us-
ing a thin-shell physical simulator [5]. The other two models were
created specifically to illustrate self-interference of closed surfaces.
The multi-handled torus illustrates complex topology while the par-
tially everted sphere consists mostly of regular patches and simple
topology. Given equal implementation effort our runtime for the lat-
ter kind of example will be close to that for a corresponding spline
model.

7

Figure 11: Self-interference detection.Control mesh and interfer-
ence resolved limit surface of higher genus torus with two tubes
crossing in the center.

Figure 12: User-controlled tolerance.A partially everted sphere
and its interference region resolved to different resolutions.

5 Conclusion

We have derived an interval bound on the normal directions of a
subdivision surface near an irregular vertex using eigenbasis func-
tions induced by the local subdivision operator. The bounds have
been found to work well in practice, i.e., they are tight and re-
quire only a small number of multiplications in the eigenbasis—
equivalent to standard subdivision, but without any change to the
mesh data structures.

Such normal bounds have many applications since they are a
central element in a large number of algorithms related to interfer-
ence detection [3, 5, 10, 16, 18, 22]. We demonstrated an example
application of these bounds to self-collision detection. In future
work we hope to include more optimizations for other parts of the
collision detection algorithm [9, 14, 19, 28] and pursue stable col-
lision response methods in the context of thin-shell modeling.

Acknowledgements The research reported here was sup-
ported in part through NSF (DMS-9874082, DMS-9872890, ACI-
9982273), the Packard Foundation, Pixar, Alias|Wavefront, Intel,
and Lucent. Special thanks to Adi Levin, Mathieu Desbrun, Mika
Nyström, Nathan Litke, Denis Zorin, Jos Stam, Jeff Bolz, Zo¨e
Wood, Yuval Grinspun and Khrysaundt Koenig.

References
[1] A LEFELD, G., AND HERZBERGER, J. Introduction to Interval Computations.

Academic Press, 1983.

[2] BARAFF, D., AND WITKIN , A. Large steps in cloth simulation.Proceedings of
SIGGRAPH 98 (July 1998), 43–54.

[3] BIERMANN, H., KRISTJANSSON, D., AND ZORIN, D. Approximate boolean
operations on free-form solids. InProceedings of SIGGRAPH 2001 (Los Ange-
les, CA, August 2001). In Press.

[4] CARMO, M. P. D. Differential Geometry of Curves and Surfaces. Prentice-Hall,
1976, ch. 3.

[5] CIRAK , F., ORTIZ, M., AND SCHRÖDER, P. Subdivision surfaces: A new
paradigm for thin-shell finite-element analysis.Internat. J. Numer. Methods En-
grg. 47 (2000), 2039–2072.

[6] CIRAK , F., SCOTT, M. J., ANTONSSON, E. K., ORTIZ, M., AND SCHRÖDER,
P. Integrated modeling, finite-element analysis, and engineering design for thin-
shell structures using subdivision.Computer-Aided Design (2001). In Press.

[7] COHEN, J. D., LIN, M. C., MANOCHA, D., AND PONAMGI, M. K. I-collide:
An interactive and exact collision detection system for large-scale environments.
In Proc. ACM Interactive 3D Graphics Conf. (1995), pp. 189–196.

[8] COURSHESNES, M., VOLINO, P., AND THALMANN , N. M. Versatile and effi-
cient techniques for simulating cloth and other deformable objects.Proceedings
of SIGGRAPH 95 (August 1995), 137–144.

[9] DANIEL , M. Using a convex pyramid to bound surface normal vectors.Com-
puter Graphics Forum 15, 4 (1996), 219–227.

[10] DEROSE, T., KASS, M., AND TRUONG, T. Subdivision surfaces in character
animation.Proceedings of SIGGRAPH 98 (July 1998), 85–94.

[11] DOO, D., AND SABIN , M. Analysis of the behaviour of recursive division sur-
faces near extraordinary points.Computer Aided Geometric Design 10, 6 (1978),
356–360.

[12] GARLAND, M., WILLMOTT, A., AND HECKBERT, P. S. Hierarchical face clus-
tering on polygonal surfaces.2001 ACM Symposium on Interactive 3D Graphics
(March 2001), 49–58.

[13] GOTTSCHALK, S., LIN, M., AND MANOCHA, D. Obb-tree: A hierarchical
structure for rapid interference detection.Proceedings of SIGGRAPH 96 (August
1996), 171–180.

[14] HE, T. Fast collision detection using quospo trees.1999 ACM Symposium on
Interactive 3D Graphics (April 1999), 55–62.

[15] HOHMEYER, M. A surface intersection algorithm based on loop detection.In-
ternational Journal of Computational Geometry and Applications 1, 4 (1991),
473–490.

[16] HOHMEYER, M. E. Robust and Efficient Intersection for Solid Modeling. PhD
thesis, UC Berkeley, 1992.

[17] HUGHES, M., DIMATTIA , C., LIN, M. C., AND MANOCHA, D. Efficient
and accurate interference detection for polynomial deformation.Proceedings of
Computer Animation ’96 (1996).

[18] KIM , D.-S., PAPALAMBROS, P. Y., AND WOO, T. C. Tangent, normal, and
visibility cones on b´ezier surfaces.Computer Aided Geometric Design 12, 3
(1995), 305–320.

[19] KRISHNAN, S., GOPI, M., LIN, M., MANOCHA, D., AND PATTEKAR, A.
Rapid and accurate contact determination between spline models using shell-
trees.Computer Graphics Forum 17, 3 (1998), 315–326.

[20] KRISHNAN, S.,AND MANOCHA, D. An efficient surface intersection algorithm
based on lower-dimensional formulation.ACM Transactions on Graphics 16, 1
(January 1997), 74–106.

[21] LIN, M., AND GOTTSCHALK, S. Collision detection between geometric mod-
els: A survey. Proceedings of IMA Conference on Mathematics of Surfaces
(1998).

[22] LITKE, N., LEVIN, A., AND SCHRÖDER, P. Trimming for subdivision surfaces.
Computer Aided Geometric Design 18, 5 (June 2001), 463–481.

[23] LOOP, C. T. Smooth subdivision surfaces based on triangles. Master’s thesis,
Department of Mathematics, University of Utah, 1987.

[24] MA, Y., AND LEE, Y.-S. Detection of loops and singularities of surface inter-
sections.Computer-Aided Design 30, 14 (1998), 1059–1067.

[25] PONAMGI, M. K., MANOCHA, D., AND LIN, M. C. Incremental algorithms
for collision detection between polygonal models.IEEE Transactions on Visual-
ization and Computer Graphics 3, 1 (Jan.–Mar. 1997), 51–64.

[26] PROVOT, X. Collision and self-collision handling in cloth model dedicated to
design.Computer Animation and Simulation ’97 (September 1997), 177–190.

[27] SEDERBERG, T., AND MEYERS, R. Loop detection in surface patch intersec-
tions. Computer Aided Geometric Design 5, 2 (1988), 161–171.

[28] SEDERBERG, T. W., AND ZUNDEL, A. K. Pyramids that bound surface patches.
Graphical Models and Image Processing 58, 1 (January 1996), 75–81.

[29] SNYDER, J. M., WOODBURY, A. R., FLEISCHER, K., CURRIN, B., AND

BARR, A. H. Interval method for multi-point collision between time-dependent
curved surfaces.Proceedings of SIGGRAPH 93 (August 1993), 321–334.

[30] STAM, J. Exact evaluation of catmull-clark subdivision surfaces at arbitrary
parameter values.Proceedings of SIGGRAPH 98 (July 1998), 395–404.

[31] TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. Elastically
deformable models.Computer Graphics (Proceedings of SIGGRAPH 87) 21, 4
(July 1987), 205–214.

[32] TERZOPOULOS, D., PLATT, J., AND FLEISCHER, K. Heating and melting de-
formable models (from goop to glop).Graphics Interface ’89 (June 1989), 219–
226.

[33] VOLINO, P., AND THALMANN , N. M. Efficient self-collision detection on
smoothly discretized surface animations using geometrical shape regularity.
Computer Graphics Forum 13, 3 (1994), 155–166.

[34] ZORIN, D., AND SCHRÖDER, P., Eds.Subdivision for Modeling and Animation.
Course Notes. ACM SIGGRAPH, 1998.

8

