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Abstract

Visual quality, low computational cost, and numerical stability are foremost goals in computer ani-

mation. An important ingredient in achieving these goals is the conservation of fundamental motion

invariants. For example, rigid and deformable body simulation has benefited greatly from conser-

vation of linear and angular momenta. In the case of fluids, however, none of the current techniques

focuses on conserving invariants, and consequently they often introduce a visually disturbing nu-

merical diffusion ofvorticity. Visually just as important is the resolution of complex simulation

domains. Doing so with regular (even if adaptive) grid techniques can be computationally delicate.

In this thesis we describe a novel technique for the simulation of fluid flows. It is designed to

respect the defining differential properties,i.e., theconservation of circulationalong arbitrary loops

as they are transported by the flow. Consequently, our method offers several new and desirable

properties: (1) arbitrary simplicial meshes (triangles in 2D, tetrahedra in 3D) can be used to define

the fluid domain; (2) the computations are efficient due to discrete operators with small support;

(3) the method is stable for arbitrarily large time steps; (4) it preservesdiscrete circulationavoiding

numerical diffusion of vorticity; and (5) its implementation is straightforward.
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Chapter 1

Introduction

Conservation of motion invariants at the discrete computational level is an important ingredient in

the construction of numerically stable simulations with a high degree of visual realism [24]. For

example, failure to preserve linear and angular momenta in solid mechanics simulations can result

in noticeable qualitative inaccuracy. So far, advances of this type have yet to deeply impact fluid

flow simulations. Current methods in fluid simulation are rarely designed to conservedefining

physical properties. Consider, for example, the need in many methods to continually project the

numerically updated velocity field onto the set of divergence free velocity fields; or the need to

continually reinject vorticity lost due to numerical dissipation as a simulation progresses.

We present a simulation algorithm for incompressible fluids that, by construction, preserves

discrete notions of Kelvin’s circulation theorem as well as the divergence-free constraint. Instead

of simply discretizing the governing differential equations—the Euler equations for inviscid flows

and the Navier-Stokes equations for viscous flows—we take ageometricapproach to the solution

of the system. In recent years, there has been a renewed emphasis on the geometric structure of

physical systems as a key feature for developing reliable and efficient numerical methods that better

respect the underlying physics. Computational Electro-Magnetism (E&M) and Discrete Variational

Mechanics, for instance, have independently demonstrated that geometric understanding of the con-

tinuous model and proper geometric discretization are crucial for obtaining stable numerical results

that conserve charge, momentum, and energy (see, for example, [3, 24, 19, 21, 12]).

The geometric structure of fluid mechanics, specifically Euler’s equations for inviscid fluids, has

been investigated from a theoretical point of view (see [23] and references therein). In this geometric

framework, vorticity plays a central role since Euler’s equations can be written directly as a simple

vorticity advection (see Section2.1for details). Inspired by this geometric viewpoint and the recent
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advances in Discrete Exterior Calculus (DEC—see [3, 16]), we propose to mimic these geometric

properties on the discrete level through adiscrete differential approach to fluid mechanics.

A key ingredient in this approach is the location of physical quantities on the appropriate geo-

metric structures (i.e., vertices, edges, faces, or cells). Using the correspondingdiscrete calcu-

lus on simplicial complexeswe construct a novel integration scheme which employs intrinsically

divergence-free variables. This removes the need to enforce the usual divergence-free constraint

through a numerically lossy projection step. Our time integration methodby constructionpreserves

circulation and consequently vorticity. It accomplishes this while being simple, numerically effi-

cient, and unconditionally stable, achieving high visual quality even for very large time steps.

Our approach can be contrasted with Stable Fluids based methods as follows:

� our technique is based on a classicalvorticity formulation of Navier-Stokes and Euler equa-

tions; unlike most vorticity-based methods in CFD and CG, our approach isEulerian as we

work only with a fixed mesh andnot a Lagrangian representation involving vorticity particles

(or similar devices);

� we use an unconditionally-stable, semi-Lagrangian backward advection strategy for vertices just

like Stable Fluids;in contrast to Stable Fluids however we do not point sample velocity,

but rather compute integrals of vorticity; this simple change removes the need to enforce

incompressibility in the updated velocity field through projection;

� our strategy exactly preserves circulation along discrete loops in the mesh; capturing this

geometric propertyof fluid dynamics guarantees that vorticity does not get dissipated as is typ-

ically the case in Stable Fluids; consequently no vorticity confinement (or other post processes)

are required to maintain this important element of visual realism;

� our method has multiple advantages from an implementation point of view: it handles

arbitrary meshes (regular grids, hybrid meshes [11], and even cell complexes) with non-trivial

topology; the operators involved have very small support leading to very sparse linear systems;

all quantities are stored intrinsically (scalars on edges and faces) without reference to global or

local coordinate frames; the computational complexity is comparable to previous approaches;

This thesis contains all the details necessary to implement a complete simplicial fluid simula-

tor from scratch. The fluid simulation algorithm and its implementation are discussed in detail in

Chapter2. In Chapter3 we present our results and analyze the behavior of our algorithm on a few

well-studied test cases from the CFD literature. We compare our results to numerical data obtained
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from other methods, and investigate convergence properties underh andt refinement. Finally, in

order to ease approachability, further implementation details beyond the simulator module are pre-

sented in Chapter4. We discuss our implementation of a tetrahedral mesh data structure suitable

for use with any DEC-based algorithm, as well as the implementation and construction of the DEC

operators that we use.

Chapter2 is a modified version of a paper written with coauthors Yiying Tong, Eva Kanso,

Mathieu Desbrun and Peter Schröder ([9]). My main contributions are the implementation itself

and the numerical experiments and results.

1.1 Previous Work

Fluid Mechanics has been studied extensively in the scientific community both mathematically and

computationally. The physical behavior of incompressible fluids is usually modeled by Navier

Stokes (NS) equations for viscous fluids and by Euler equations for inviscid (non-viscous) fluids.

Numerical approaches in computational fluid dynamics typically discretize the governing equations

through Finite Volumes (FV), Finite Elements (FE) or Finite Differences (FD) methods. We will

not attempt to review the many methods proposed (an excellent survey can be found in [20]) and

instead focus on approaches used for fluids in computer graphics. Some of the first fluid simu-

lation techniques used in the movie industry were based on Vortex Blobs [37] and Finite Differ-

ences [14]. To circumvent the ill-conditioning of these iterative approaches for large time steps

and achieve unconditional stability, Jos Stam [29, 30] introduced to the graphics community the

method of characteristicsfor fluid advection and the Helmholtz-Hodge decomposition to ensure

the divergence-free nature of the fluid motion [5]. The resulting algorithm, calledStable Fluids,

is an extremely successful semi-Lagrangian approach based on a regular grid Eulerian space dis-

cretization, that led to many refinements and extensions which have contributed to the enhanced

visual impact of fluid animations. Among others, these include the use of staggered grids and

monotonic cubic interpolation [10]; improvements in the handling of interfaces [13]; extensions to

curved surfaces [31, 33, 27]; inclusion of visco-elastic objects [15]; and goal oriented control of

fluid motion [34, 25, 26].

However, the Stable Fluids technique is not without drawbacks. Chief among them is the dif-

ficulty of accomodating complex domain boundaries with regular grids. Local adaptivity [22] can

greatly help, but the associated octree structures require significant overhead. Additionally, regular
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partitions of space (adaptive or not) can suffer from preferred direction sampling, leading to arti-

facts similar to aliasing in rendering. Finally, due to numerical dissipation, current methods do not

enforce important invariants aside from the divergence-free nature of the flow. While exaggerated

loss of total energy is often difficult to notice, excessive dissipation of vorticity affects the motion

significantly. The presence of vortices in liquids and volutes in smoke is one of the most important

visual clues to our perception of fluidity. Vorticity confinement [32, 10] was designed to counteract

this dissipation through local reinjection of vorticity. Unfortunately, it is hard to control how much

can safely be added back without affecting stability or plausibility of the results.
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Chapter 2

A Circulation-Preserving Integration
Algorithm

2.1 Geometry of Fluid Motion

Before going into the details of our algorithm we discuss the underlying fluid equations with their

relevant properties and how these can be captured over discretized domains.

2.1.1 Euler Fluids

Consider an inviscid, incompressible, and homogeneous fluid on a domainD in 2 or 3D. TheEuler

equations, governing the motion of this fluid (with no external forces for now), can be written as:

∂u
∂t

+ u · ∇u = −∇p ,

div(u) = 0 , u ‖ ∂D .
(2.1)

We assume unit density (ρ = 1) and useu to denote the fluid velocity,p the pressure, and∂D the

boundary of the fluid regionD. The pressure term in Eq. (2.1) can be dropped easily by rewriting

the Euler equations in terms ofvorticity. Recall that traditional vector calculus defines vorticity as

the curl of the velocity field,ωωω = ∇× u. Taking the curl (∇×) of Eq.(2.1), we obtain

∂ωωω

∂t
+ Luωωω = 0 ,

ωωω = ∇× u , div(u) = 0 , u ‖ ∂D .
(2.2)

whereLuωωω is the Lie derivative, equal in our case tou · ∇ωωω −ωωω · ∇u. In this form, this vorticity-

based equation states thatvorticity is simply advected along the fluid flow. Note that Equation (2.2)
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is equivalent to the more familiarDωωω
Dt = ωωω ·∇u, and therefore already includes the vortex stretching

term appearing inLagrangianapproaches. Roughly speaking, vorticity measures the local spin of a

fluid parcel. Therefore, vorticity advection means that local spin moves with the flow.

Since the integral of vorticity on a given bounded surface equals (by Stokes’ theorem) thecir-

culationaround the bounding loop of the surface, one can explain the geometric nature of an ideal

fluid flow in particularly simple terms:the circulation around any closed loopC is conserved

throughout the motion of this loop in the fluid. This key result is known as Kelvin’s circulation

theorem, and is usually written as:

Γ(t) =
∮
C(t)

u · dl = constant , (2.3)

whereΓ(t) is the circulation of the velocity on the loopC at timet as it gets advected in the fluid.

This will be the key to our time integration algorithm.

2.1.2 Viscous Fluids

In contrast to ideal fluids, incompressibleviscousfluids generate very different fluid behaviors.

They can be modelled by theNavier-Stokesequations (compare with Eq. (2.1)):

∂u
∂t

+ u · ∇u = −∇p+ ν∆u ,

div(u) = 0 , u|∂D = 0 .
(2.4)

where∆ denotes the Laplace operator, andν is thekinematic viscosity. Note that different types of

boundary conditions can be added depending on the chosen model. Despite the apparent similarity

between these two models for fluid flows, the added diffusion term dampens the motion, resulting

in a slow decay of circulation. This diffusion also implies that the velocity of a viscous fluid at

the boundary of a domain must be null, whereas an inviscid fluid could have a non-zero tangential

component on the boundary. Here again, one can avoid the pressure term by taking the curl of the

equations (compare with Eq. (2.2)):

∂ωωω

∂t
+ Luωωω = ν∆ωωω ,

ωωω = ∇× u , div(u) = 0 , u|∂D = 0 .
(2.5)
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2.2 Discrete Setup

For a discrete time and space numerical simulation of Eqs. (2.2) and (2.5) we need a discretized

geometry of the domain (given as a simplicial mesh for instance), appropriate discrete analogs of

velocityu and vorticity fieldsωωω, along with the operators which act on them.

2.2.1 Space Discretization

We discretize the spatial domain in which the flow takes place using a locally oriented simplicial

complex,i.e., either a tet mesh for 3D domains or a triangle mesh for 2D domains, and refer to

this discrete domain asM (see Figure2.1). The domain may have non-trivial topology,e.g., it

can contain tunnels and voids (3D) or holes (2D), but is assumed to be compact. To ensure good

numerical properties in the subsequent simulation we require the simplices ofM to be well shaped

(aspect ratios bounded away from zero). This assumption is quite common since many numerical

error estimates depend heavily on the element quality. We use meshes generated with the method

of [1]. Collectively we refer to the sets of vertices, edges, triangles, and tets asV , E, F , andT .

We will also need thedual mesh. It associates with each original simplex (vertex, edge, triangle,

tet, respectively) its dual (dual cell, dual edge, dual face, and dual vertex, respectively) (see Fig.2.2).

The geometric realization of the dual mesh uses tet circumcenters as dual vertices and Voronoi cells

as dual cells; dual edges are line segments connecting dual vertices across shared tet faces and

dual faces are the faces of the Voronoi cells. Notice that storing values on primal simplices or on

their associated dual cells is conceptually equivalent, since both sets have the same cardinality. We

will see in Section2.4 that corresponding primal and dual quantities are related through a simple

(diagonal) linear operator.

Figure 2.1:Domain Mesh: our fluid simulator uses a simplicial mesh to discretize the equations
of motion; (left) the domain mesh (shown as a cutaway view) used in Fig.3.1; (middle) the curved
triangle mesh used in Fig.3.3; (right) a coarser version of the flat 2D mesh used in Fig.3.5.



8

Figure 2.2:Primal and Dual Cells: the simplices of our mesh are vertices, edges, triangles and tets
(up); their circumcentric duals are dual cells, dual faces, dual edges and dual vertices (bottom).

2.2.2 Discretization of Physical Quantities

In order to faithfully capture the geometric structure of fluid mechanics on the discrete mesh, we

define the usual physical quantities, such as velocity and vorticity, throughintegral values over

the elements of the meshM. Depending on whether a given quantity is a point, line, area or

volume density, the corresponding discrete representation will “live” at the associated 0, 1, 2, and

3 dimensional mesh elements. These integral values are formally calleddiscrete differentialk-

formsfor k = 0, 1, 2, 3, and are given as integrals of the corresponding differentialk-form over the

underlyingk-cell or k-simplex (we refer the interested readers to a tutorial on this notion [8] for a

more comprehensive exposition). In practice we realizek-forms as vectors ofdouble of length

|V | (for 0-forms),|E| (for 1-forms),|F | (for 2-forms), and|T | (for 3-forms).

Velocity as Discrete Flux To encode a coordinate free (intrinsic) representation of velocity on

the mesh we useflux, i.e., the mass of fluid transported across a given surface area per unit time.

Note that this makes flux anintegrated, not pointwise, quantity. On the discrete mesh, fluxes are

associated with the triangles of the tet mesh. Thus fluid velocityu is treated as a2-form and

represented as a vectorU of values on faces (size|F |). This coordinate-free point of view, also

used in [11], is reminiscent of the staggered grid method used in [10] and other non-collocated grid

techniques (see [15]). In the staggered grid approach one does not store thex, y, z components of

a vector at nodes but rather associates them with the corresponding grid faces. We may therefore

think of the idea of storing fluxes on the triangles of our tet mesh as a way ofextendingthe idea

of staggered grids to the more general simplical mesh setting. This was previously exploited in [4]

in the context of E&M computations. It also makes the usual no-transfer boundary conditions easy

to encode: boundary faces experience no flux across them. Encoding this boundary condition for

velocity vectors stored at vertices is far more cumbersome.
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Divergence as Net Flux on Tets Given the incompressibility of the fluid, the velocity field must

be divergence-free (∇ · u = 0). In the discrete setting, the integral of the divergence over a tet

becomes particularly simple. According to the generalized Stokes’ theorem this integral equals the

sum of the fluxes on all four faces,i.e., everything that gets in must get out (see Fig.2.3). Divergence

can therefore be stored as a3-form, i.e., as a value associated to each tet (a vector of cardinality|T |).

Figure 2.3:Discrete Physical Quantities: in our geometric discretization, fluid flux lives on faces
(left), divergence lives on tets (middle), and vorticity lives on edges (right).

Vorticity as Flux Spin Finally we need to define vorticity on the mesh. To see the physical

intuition behind our definition, consider an edge in the mesh. It has a number of faces incident on

it, akin to a paddle wheel (see Figure2.3). The flux on each face contributes a torque to the edge.

The sum of all these, when going around an edge, is the net torque that would “spin” the edge. We

can thus give a physical definition of vorticity as a weighted sum of fluxes on all faces incident to

a given edge. This quantity is now associated with primal edges—or, equivalently, dual faces—and

is thus represented by a vectorΩ of size|E|.

In Section2.4, we will see that these physical intuitions can be derived formally from simple

algebraic relationships.

2.3 Geometric Integration of Fluid Motion

Since we are using the vorticity formulation of the fluid equations (Eqs. (2.2) or (2.5)) the time

integration algorithm must update the discrete vorticity variables which are stored on each primal

edge. We have seen that the fluid equations state that vorticity is advected by the velocity field.

The fundamental idea of our geometric integration algorithm is thus to ensure that Kelvin’s theorem

holds in the discrete setting: the circulation around any loop in the fluid remains constant as the loop

is advected. This can be achieved by backtracking loops: for any given loop at the current time,

determine its backtracked image in the velocity field (“where did it come from?”) and compute the
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circulation around the backtracked loop. This value is then assigned as the circulation around the

original loop at the present time,i.e., circulation is properly advectedby construction(see Figure2.4

for a depiction of this loop advection idea).

Since we store vorticity on primal edges, a natural choice for these loops are the bounding

loops of the dual faces associated to each primal edge (see Figure2.2). Notice that these loops

are polylines formed by sequences of dual vertices around a given primal edge. Consequently an

efficient implementation of this idea requires only that we backtrackdual verticesin the velocity

field. Once these positions are knownall backtracked dual loops associated toall primal edges are

known. These Voronoi loops can indeed generate any discrete, dual loop: the sum of adjacent loops

is a larger, outer loop as the interior edges cancel out due to opposite orientation as sketched in

Fig. 2.4(right). The evaluation of circulation around these backtracked loops will be quite straight-

forward . By Stokes’ theorem the integral of vorticity over a dual face equals the circulation around

its boundary, so we have achieved our goal of updating vorticities and,by design, ensured a discrete

version of Kelvin’s theorem.

The algorithmic details of this geometric approach to time integration of the equations of motion

for fluids are given in Section2.5.

Figure 2.4:Kelvin’s Theorem: (left) in the continuous setting, the circulation on any loop being
advected by the flow is constant. (middle) our discrete integration scheme enforces this property on
each Voronoi loop, (right) thus on any discrete loop.

2.4 Computational Machinery

Now that the spatial and physical discretizations are properly defined, we must manipulate the

numerics involved in our integration scheme in a principled manner to guarantee proper physical

behavior. In this section, we point out that the basic operators to go from fluxes to the divergence,
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curl, or Laplacian of the velocity field can beformally defined. For a full discussion on the topic

of Discrete Exterior Calculus (DEC), which defines precisely a discrete calculus on simplicial com-

plexes, see for instance [8]. We will only present the practical implementation of the few operators

we need.More importantly, we will show that this implementation reduces to simple linear algebra

with very sparse matrices.

2.4.1 Two Basic Operators

The computations involved in our approach only require the definition of two basic operators: one

is the exterior derivatived, necessary to compute derivatives, like gradients, divergences, or curls;

the other is the Hodge star, to transfer values from primal simplices to dual simplices.

Exterior Derivative d Given an oriented mesh, we implement our first operator by simply assem-

bling the incidence matricesof the mesh. These will act on the vectors of our discrete forms and

implement the discrete exterior derivative operatord as explained in more details in AppendixA.1.

For our 3D implementation, there are three sparse matrices involved, which contain only entries of

type0, +1, and−1. Care is required in assembling these incidence matrices, as the orientation must

be taken into account in a consistent manner. The first one isd0, the incidence matrix of vertices

and edges (|E| rows and|V | columns). Each row contains a single+1 and−1 for the end points

of the given edge (and zero otherwise). The sign is determined from the orientation of the edge.

The second matrix is, similarly, encoding the incidence relations of edges and faces (|F | rows and

|E| columns), with appropriate+1 and−1 entries according to the the orientation of edges as one

moves around a face. More generallydk is the incidence matrix ofk-cells onk + 1-cells.

A simple debugging sanity check (necessary but not sufficient) is to compute consecutive prod-

ucts: d0 followed by d1 must be a matrix of zeros, and similarly as must bed1 followed by d2.

This reflects the fact that the boundary of any boundary is the empty set. It also corresponds to the

calculus fact that curl of grad is zero as is divergence of curl (see AppendixA.1).

Hodge Star The second operator we need will allow us to transfer quantities back and forth be-

tween the primal and dual mesh. We can project a primalk-form to a conceptually-equivalent dual

(3 − k)-form with theHodge star. We will denote?0 (resp.,?1, ?2, ?3) the Hodge star taking a

0-form (resp.,1-form, 2-form, and3-form) to a dual3-form (resp., dual2-form, dual1-form, dual

0-form). In this work we use what is known as thediagonal Hodge star[3]. This operator simply
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scales whatever quantity that is stored on mesh cells by the volumes of the corresponding dual and

primal cells: letvol(.) denote the volume of a cell (i.e., 1 for vertices, length for edges, area for

triangles, and volume for tets), then

(?k)ii = vol(σ̃i)/ vol(σi)

whereσi is any primalk-simplex, and̃σi is its dual. These linear operators, describing the local

metric, are diagonal and can be stored as vectors. Conveniently, the inverse matrices going from

dual to primal quantities are trivial to compute for this diagonal Hodge star.

Overloading Operators Note that both thedk and the?k operators aretyped: the subscriptk

is implicitly determinedby the dimension of the argument. For example, the velocity fieldu is a

2-form stored as a vectorU of cardinality|F |. Consequently the expressiondU implies use of the

|T |× |F |-sized matrixd2. In the implementation this is accomplished with operator overloading (in

the sense ofC++). We will take advantage of this and drop the dimension subscripts from now on.

2.4.2 Offline Matrix Setup

With these overloads ofd and? in place, we can now set up the only two matrices (C andL) that

will be used during simulation. They respectively represent the exact discrete analogs of the curl

and Laplace operators [8].

Curl Since we store fluxes on faces and gather them in a vectorU , thecirculation of the vector

field u can be derived as values on dual edges through?U . Vorticity, typically a2-form in fluid

mechanics [23], is easily computed by then summing this circulation along the dual edges that form

the boundary of a dual face. In other words,ωωω = ∇×u becomes, in terms of our discrete operators,

simply Ω = dT ? U . We therefore create a matrixC offline asdT ?, i.e., the composition of an

incidence matrix with a diagonal matrix.

Laplacian The last matrix we need to define is the discrete Laplacian. The discrete analog of

∆φ = (∇∇·−∇×∇×)φ = ωωω is simply(?d?−1dT ?+dT ?d) Φ = Ω as explained in AppendixA.2.

This last matrix, a simple composition of incidence and diagonal matrices, is precomputed and

stored asL for later use.
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2.5 Implementation

To facilitate a direct implementation of our integration scheme, we provide pseudocode (Figure2.5)

along with implementation notes which provide details for specific steps and how these related to

the machinery developed in earlier sections.

//Load mesh and build incidence matrices
C ← dT ?
L← ?d?−1dT ?+dT ? d

//Time steppingh
loop

//Advect Vorticities
for each dual vertex (tet circumcenter)ci

ĉi ← PathTraceBackwards(ci);
vi ← InterpolateV elocityF ield(ĉi);

for each dual facef
Ωf ← 0
for each dual edge(i, j) on the boundary off

Ωf ← Ωf + 1
2 (vi + vj) · (ĉi − ĉj);

//Add forces
Ω← Ω + h C F

//Add diffusion for Navier-Stokes
Ψ← SolveCG( (? − ν h L)Ψ = Ω );
Ω← ? Ψ

//Convert vorticities back to fluxes
Φ← SolveCG( L Φ = Ω );
U ← dΦ;

Figure 2.5:Pseudocode of our fluid motion integrator.

2.5.1 External Body Forces

The use of external body forces, like buoyancy, gravity, or stirring, is common practice to create

interesting motions. Incorporating external forces into Eq. (2.4) is, fortunately, straightforward,

resulting in:
∂u
∂t

+ u · ∇u = −∇p+ ν∆u + f .
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Again, taking the curl of this equation allows us to recast this equation in terms of vorticity:

∂ωωω

∂t
+ Luωωω = ν∆ωωω +∇× f . (2.6)

Thus, we note that an external force influences the vorticity only through the force’s curl (the∇ · f

term is compensated for by the pressure term keeping the fluid divergence-free). Thus, if we express

our forces through the vectorF of their resulting fluxes in each face, we can directly add the forces

to the domain by incrementingΩ by the circulation ofF over the time steph, i.e.:

Ω← Ω + h C F.

2.5.2 Adding Diffusion

If we desire to simulate a viscous fluid, we must add the diffusion term present in Eq. (2.5). Note

that previous methods were sometimes omitting this term because their numerical dissipation was

already creating (uncontrolled) diffusion. In our case, however, this diffusion needs to be properly

handled if viscosity is desired. This is easily done through an unconditionally-stable implicit inte-

gration as done in Stable Fluids (i.e., we also use a fractional step approach). Using the discrete

Laplacian in Eq. (A.3) and the current vorticityΩ, we simply solve for the diffused vorticityΩ′

using the following linear system:

(?− νhL) ?−1 Ω′ = Ω.

2.5.3 Interpolation of Velocity

In order to perform the backtracking of dual vertices we must first define a velocity field over

the entire domain using the data we have on primal faces (fluxes). This is done by computing a

unique velocity vector for each dual vertex and then using barycentric interpolation of these vectors

over each dual Voronoi cell [36], defining a continuous velocity field over the entire domain. This

velocity field can be used to backtrack dual vertices as well as transport particles or dyes (e.g., for

visualization purposes) with standard methods.

To see that such a vector, one for each dual vertex, is well defined consider the following argu-

ment. The flux on a face corresponds under duality (via the Hodge star) to a circulation along the

dual edge of this face. Now, there is a linear relation between fluxes per tet due to the incompress-
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ibility condition (fluxes must sum to zero). This translates directly to a linear condition on the four

circulations at each tet too. Thus, there is a unique vector (with three components) at the dual vertex

whose projection along the dual edges is consistent with the observed circulations.

Relation to k-form Basis Functions The standard method to interpolatek-form data in a piece-

wise linear fashion over simplicial complexes is based on Whitney forms [3]. In the case of primal

2-forms (fluxes) this results in a piecewise constant (per tet) velocity field. Our argument above,

using a Voronoi cell based generalized barycentric interpolation of dual1-forms (circulation), in

fact extendsthe Whitney form machinery to the dual setting. This is a novel contribution which

may be useful in other computational applications of discrete forms. We note that the generalized

barycentric coordinates have linear accuracy [36], an important requirement in many settings.

2.5.4 Handling Arbitrary Topology

Recall that for a given a velocity fieldu there exists a unique vorticity fieldωωω = ∇× u. However

the inverse statement is not true in general; a vorticity field does not uniquely specify a velocity

field. In particular, adding any vorticity-free field tou does not affectωωω. Because velocity fields

that are both vorticity-freeanddivergence-free (“harmonic”) cannot exist in closed simple domains,

we need only consider this extra degree of freedom when the domain has nontrivial topology (e.g.,

when the first Betti number is not zero).

By the Helmholtz-Hodge decomposition theorem (Eq. (A.1)), we can represent our velocity field

as the sum of a rotational field (∇ × ωωω) and a vorticity-free field (h). Furthermore, in the absence

of external forces,h remains constant. Addressing arbitrary topology domains can therefore be

accomplished by augmenting the existing algorithm with the following:

� We have an additional2-formH that is initialized to0 and is updated at each timestep with the

harmonic component of the forces; assumingF is divergence-free,H ← H + h(F − CF ).

� U ← dΦ becomesU ← dΦ +H instead.

2.5.5 Handling Boundaries

The algorithm as described above does not constrain the boundaries, thus achieving “open” bound-

ary conditions. No-transfer boundary conditions are easily imposed by setting the fluxes through

the boundary triangles to zero. Non-zero flux boundary conditions (i.e., forced fluxes through the
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boundary as in the case of Fig.3.5) are more subtle. First, remark that all these boundary fluxes

mustsum to zero; otherwise, we would have little chance of getting a divergence-free fluid in the

domain. Since the total divergence is zero, there exists a harmonic velocity field satisfying exactly

these conditions. This is, again, a consequence of the Helmholtz-Hodge decomposition theorem

with normal boundary conditions [5]. Thus, this harmonic partH can be computedonce and for all

through a Poisson equation using the same setup as described in AppendixA.2. Then we addH to

U at each timestep, as in the previous section.

Vorticity on Boundaries The Voronoi cells at the boundaries are slightly different from the usual,

interior ones, since boundary edges do not have a full 1-ring of tets. If the boundaries are uncon-

strained, this is not a problem; boundary cells may be backtracked and updated just like interior

ones. However, if no-transfer boundary conditions are imposed, vorticity must be handled differ-

ently on the boundary.

Note that if the boundary fluxes are constrained, we solve the Poisson equation forU using only

values ofΩ on interior dual faces; assigning values on the boundary would over-constrain the linear

system. During the diffusion step, however, values ofΩ on the boundary are necessary. The first

implication of this is that boundary vorticities need not be assigned in inviscid simulations, because

there is no diffusion step. For viscous simulations, we must assign vorticity values to boundary cells

subject to the constraint that the tangential velocity on the boundary be0 (see Eq.2.4).

Recall thatΩ = dT ?U . Said differently, the vorticity on an interior dual facef is equivalent to

Ωf =
∑
e∈∂f

(?U)e

where(?U)e is the circulation on dual edgee. On boundary cells,∂f contains pieces that are not

dual edges, as illustrated in Figure2.6(b). The vorticity on such a cell can be calculated by simply

assigning0 to the line segments on the boundary of the domain, in accordance with the viscous

boundary conditions.

a)
b)

f

f

Figure 2.6:Boundary Cells: Interior cells are bounded only by dual edges (a), while the perimeter
of a boundary cell contains line segments that do not lie on the dual mesh (b).
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Chapter 3

Results and Discussion

3.1 Coarse Resolution Simulations

We start with a few simulations that demonstrate the applicability of our method to Computer Graph-

ics applications.

3.1.1 3D Simulations

First we consider a smoke cloud surrounded by air, filling the body of a bunny as an example of

flow in a domain with complex boundary. Buoyancy drives the air flow which, in turn, advects

the smoke cloud in the three-dimensional domain as shown in Fig.3.1. The mesh used for this

simulation consists of only7K vertices and32K tets, while still effectively resolving the detailed

features of the flow in the ears and head.

We also show a snow globe with a bunny inside in Fig.3.2. We emulate the flow due to an initial

Figure 3.1: Smoking Bunny: This example demonstrates the power of using tetrahedral meshes
for resolving exact boundaries. Here, a hot smoke cloud rises inside a bunny shaped domain of
7K vertices (32K tets), significantly reducing the computational cost of the simulation for such an
intricate boundary compared to regular grid-based techniques (0.47s/frame on a PIV3GHz).
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spin of the globe using a swirl described as a vorticity field. The snow particles are transported by

the flow as they fall down under the effect of gravity. The viscous (no-slip) boundary conditions in

this simulation cause the falling particles to stick to the interior boundary as they fall.

Both examples use a timestep ofh = 1/30, and both tookless than half a second per frame

to compute on a3GHz Intel Pentium IV, exemplifying the advantage of using tet meshes to resolve

fine boundaries.

Rendering In these examples, a large number of passive marker particles are advected through

the flow for visualization purposes. The runtimes for this step vary greatly depending on the number

of particles used, the time step size, and the order of accuracy of the path tracer. The snow globe

example required only a few thousand snow particles, which could be advected and displayed with

minimal overhead. The smoke example, on the other hand, uses several million smoke particles for

visualization, requiring20 to 30 seconds on average per frame to advect and render.

Because the particles do not affect the simulation, the user may run interactive preview simula-

tions with less particles in order to adjust parameters as necessary. Furthermore, if an animation is

not required, the simulation may be advanced to the point of interest without any visualization over-

head, after which the velocity field can be visualized using any flow visualization technique, such as

streamlines, implicit stream surfaces, Volume Line Integral Convolution, or others [38, 35, 17, 6].

Figure 3.2:Bunny Snow Globe: the snow in the globe is advected by the inner fluid, initially stirred
by a vortex to simulate a spin of the globe.

3.1.2 Curved Surfaces

We have also considered flow on curved surfaces in 3D with complex topology, as depicted in

Fig. 3.3. We were able to easily extend our implementation of two-dimensional flows to this curved

case thanks to the intrinsic nature of our approach.
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Figure 3.3: Weather System on Planet Costa: the intrinsic nature of the variables used in our
algorithm makes it amenable to the simulation of flows on arbitrary curved surfaces.

3.1.3 2D Simulations

The behavior of vortex interactions observed in existing experimental results was compared to nu-

merical results based on our novel model and those obtained from the semi-Lagrangian advection

method. It is known from theory that two like-signed vortices with a finite vorticity core will merge

when their distance of separation is smaller than some critical value. This behavior is captured by

the experimental data and shown in the first series of snapshots of Fig.3.4. As the next row of
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Figure 3.4: Two Merging Vortices: discrete fluid simulations are compared
with a real life experiment (courtesy of Dr. Trieling, Eindhoven University; see
http://www.fluid.tue.nl/WDY/vort/index.html ) where two vortices (colored
in red and green) merge slowly due to their interaction (a); while our method faithfully captures
the merging phenomenon (b), a traditional semi-lagrangian scheme does not capture the correct
motion because of vorticity damping (c).
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images indicates, the numerical results that our model generated present striking similarities to the

experimental data. In the last row, we see that a traditional semi-Lagrangian advection followed by

re-projection misses most of the fine structures of this phenomenon. This can be attributed to the

loss of total integral vorticity as evidenced in the graph; in comparison our technique preserves this

integral exactly.

Figure 3.5:Obstacle Course: in the usual experiment of a flow passing around a disk, the viscosity
as well as the velocity can significantly affect the flow appearance; (left) our simulation results for
increasing Reynolds number; (right) the vorticity magnitude (shown in false colors) of the same
frame. Notice how the usual irrotational flow is obtained (top) for zero viscosity, while the von
Karman vortex street appears as viscosity is introduced.

Finally, we tested our method on the widely studied example of a flow past a cylinder (see

Fig. 3.5). Starting with zero vorticity, it is well known that in the case of an inviscid fluid, the flow

remains irrotational at all times. By construction, our method does respect this physical behavior

since circulation is preserved for Euler equations. We then increase the viscosity of the fluid in-

crementally, and observe the formation of a vortex wake behind the obstacle, in agreement with

physical experiments. As evidenced by the vorticity plots, vortices are shed from the boundary

layer as a result of the adherence of the fluid to the obstacle, thanks to our proper treatment of the

boundary conditions.

We now use this test case of flow past a cylinder as our basis for more detailed numerical
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experiments.

3.2 Flow Past a Cylinder

In this section we investigate the behavior of our method under various parameter settings and

discuss convergence properties. The experiment consists of a flow past a stationary cylinder at

Reynolds numberRe = 15 000. Figure3.8 illustrates a representative slice of the parameter do-

main. These images plot the vorticity field near the cylinder at timet = 5.0s. For the same set of

simulations we graph the total energy and total integral vorticity in the domain over time in Fig-

ure3.9. We expect to see the vorticity graphs remain constant at0. Our method does not claim to

conserve energy, but observing the energy behavior can give us some clues about convergence rates.

3.2.1 Meshes

The domain under consideration is a two-dimensional channel containing a cross-section of a cir-

cular cylinder (a disk). The diameter (height) of the channel is8 and the radius of the cylinder is1.

We ran all of the simulations in this section on the following three meshes representing this domain.

We will refer to them as meshes1, 2, and3, respectively.

0 0.025triangle area 0 0.025triangle area0 0.025triangle area

Figure 3.6:Meshes1, 2, and3, from left to right. The bottom row shows a close up of the region
near the cylinder.
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3.2.2 Time Step

We also vary the time step sizeh. Values ofh used were0.1, 0.033, and0.01. Here we immediately

find the biggest fault of our method. We observe a roughly constant amount of numerical diffusion1

of vorticity per time step. The simulations therefore do not converge under refinement ofdt, because

the rate of the loss is inversely proportional to the size of the time step. One of the causes of the

diffusion will be addressed in Section3.2.4, and another in Section3.4.

3.2.3 Advection

The majority of the algorithm manipulates discrete forms directly; values are stored on simplices,

and discrete operators are defined to operate on the discrete forms. Path tracing, however, requires

that a velocity field be defined everywhere. In Section2.5.3 we introduced two prospective in-

terpolants. The first is piecewise-constant per tet, derived using Whitney forms. The second is

piecewise-rational (tangentially discontinuous across dual cell boundaries) and linear accurate. We

compared the results of using these two interpolants for the backtracking step, using an Euler tracer

with the first interpolant and a second order Runge-Kutta tracer with the second interpolant.

We found that RK2 path tracing using the smoother interpolant is no more or less accurate

that the piecewise-constant one. The images and graphs are nearly identical; compare Fig.3.8(a)

to Fig. 3.8(c) and Fig.3.9(a) to Fig.3.9(c). This can be attributed to the discontinuities in the

interpolant, which fails to satisfy the assumptions upon which integrators such as Runge-Kutta are

built.

Not surprisingly, using simple forward or backward Euler integration along the piecewise-

rational field performs much worse than either of the above, again due to the discontinuities. The

lack of coherence between paths of neighboring samples results in highly unstable simulations.

3.2.4 Numerical Quadrature

To assign new vorticities at each step, we integrate the circulation along backtracked loops. In

Section2.5 we did this by sampling the interpolated velocity field at the two endpoints of each

edge, averaging them, and performing a dot product with the edge itself. (This corresponds to

the trapezoid rule for 1D integrals.) We can perform a more accurate integration by increasing the

number of samples of the velocity field along the length of the edge (see Fig.3.7(b)). Again, because

1Diffusionrefers to “spreading” of vorticity, not to be confused withdissipation, or “loss”, of vorticity.
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b)a) c)

Figure 3.7:Integrating Circulation With Numerical Quadrature. a) The velocity field is evaluated
at the corners of the backtracked loop and the trapezoid rule is used to integrate the circulation
on each line segment. b) The velocity field is sampled at more locations on the backtracked loop
allowing for a more accurate reconstruction of the velocity field along each edge. c) The loop is
split before backtracking and a finer resolution representation of the loop is advected.

of the discontinuities, we do not use a higher order reconstruction for the line integral but instead

perform the integration via a Monte Carlo sampling of the velocity field along the edge.

We find that increasing the accuracy of the numerical quadrature in this manner does indeed

mitigate the diffusion problem and exhibits better vorticity preservation properties overall; compare

Fig. 3.8(a) to Fig.3.8(b) and Fig.3.9(a) to Fig.3.9(b). Another alternative is to split the edge

beforebacktracking, as in Figure3.7(c), in order to construct a more accurate representation of the

backtracked loop. This also works well, but the results are nearly identical to (b). The reason is

the following. The diffusion seems to be a result of under-sampling of the vorticity field during the

update step. Splitting the edgebeforeaddresses a different problem: it attempts to correct small

deviations in thepositionsof the loops, rather than errors in the integrals themselves. Note also that

(c) increases the running time significantly, because path tracing is one of the bottlenecks of the

algorithm.

3.2.5 Energy Preservation

Thus far we have been focusing strictly on the behavior of the vorticity field. Perhaps controlling

the energy as well may improve the accuracy of our simulations. The total energy of the fluid can

be written as:

E =
1
2

∫
D
‖ u ‖2 , or, equivalently, E =

1
2

∫
D
ωωω ·∆−1ωωω .



24

Energy preservation can be enforced by ensuring that:

(ω + δω)∆−1(ω + δω)− ω∆−1ω = 0

whereδω is the change of vorticity over a time step. Notice that ifδω∆−1(2ω + δω) = 0, the

above statement is automatically satisfied. Therefore, for a small time steph for which δω is small

compared toω, we can use the projection ofδω to the space orthogonal to∆−1(2ω + δω) as the

energy-preserving change of vorticity. Figure3.8d shows the results of applying this projection.

Unfortunately, this projection is a global operation; that is, far-away vorticities can influence

each other, which is not a property of the physical system. In particular, as shown in the figure,

non-zero vorticities are introduced in regions that do not lie in the wake of the cylinder. Clearly this

is incorrect. Furthermore, the qualitative behavior of the vortex street that forms behind the cylinder

is significantly different from that of existing physical and numerical experiments (see Fig.3.10and

3.11(d)).
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Figure 3.8:Some representative results from our flow past a cylinder experiment atRe = 15 000.
Shown are color plots of the vorticity field near the cylinder att = 5, where blue represents negative
vorticity (counter-clockwise rotation) and red represents positive vorticity (clockwise rotation). We
show the effects of using different resolutions of meshes, different time step sizes, different path
tracing methods, and different types of numerical quadrature. (d) shows the results of attempting to
preserve the total energy with anL2 projection.
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Figure 3.9:Energy and vorticity behavior of the flow past a cylinder experiment.
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3.3 Flow Past a Cylinder in Rotary Oscillation

This experiment consists of a flow over an oscillating cylinder at Reynolds numberRe = 15 000.

The cylinder is subjected to a sinusoidal rotation where the tangential velocity on the boundary is

given by
θ̇R

U∞
= 2 sin(πt

U∞
R

)

whereR is the radius of the cylinder andU∞ is the forced horizontal velocity of the fluid on the left

boundary of the simulation domain.

We compare our results to those obtained by [28] using a high resolution viscous vortex particle

method. This reference simulation uses the particle strength exchange technique ([7]) with 1.7

million computational particles (peak),∆x ≈ 0.0015, anddt = 0.004. The running time, taken to

t = 5, was 40 hours on a 256 processor Cray T3D. We compare this to our simulation using Mesh

3, dt = 0.033, the piecewise-constant interpolant for backtracking, and 10 quadrature samples per

edge. The running time was 84 minutes on a 3GHz Intel Pentium IV processor.

0 10-10

0 10-10

3.15s 3.6s 4.0s 4.3s 4.6s 5.0s

Figure 3.10:Comparison of our results to those of a high resolution viscous vortex particle method.
The top row of images are color vorticity plots from [28] (used with permission), and the bottom
row is the result of our method using Mesh3, dt = 0.033, the piecewise-constant interpolant for
backtracking, and 10 quadrature samples per edge.

At a coarse scale the simulations exhibit many important similarities. The general pattern of

our vortex wake matches that of the reference simulation. The most prominent vortex structures

are present, with correct orientations and magnitudes. However, the exact positions of the features

deviate slightly; in particular, they are further downstream than they should be. Also, the vorticity

field is much smoother because our Eulerian discretization cannot represent discontinuities. But

most importantly, our simulation cannot resolve all of the finer structures near the boundary. Al-

though many of the small vortices do indeed form on the boundary, they quickly die out as the flow

proceeds and diffuses.

Of all the parameter variations we ran, this one bears the closest resemblance to the reference.
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Figure 3.11:Some representative results from our flow past an oscillating cylinder experiment at
Re = 15 000. Shown are color plots of the vorticity field near the cylinder att = 5. Compare to
Fig. 3.8.
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Figure 3.12:Energy and vorticity behavior of the flow past an oscillating cylinder experiment.
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Images from other simulations are shown in Figure3.11for comparison. The overall behavior with

respect to variations in mesh size, time step size, etc. echoes the results in Section3.2.

3.4 Analysis

As our test case we have chosen a very challengingRe = 15 000 flow. The fine scales of relevance

at such a high Reynolds number make simulation difficult with any numerical method, and ours is

no exception.

We have pointed out that discontinuities in our interpolated velocity field limit the accuracy of

the path tracing and the numerical quadrature. And indeed, as Figures3.8(b) and3.11(b) demon-

strate, the diffusion of the vorticity field is correlated with the accuracy of the numerical quadrature.

However, even if the positions of the backtracked loops were exact and the circulation integrals were

evaluated exactly, there would still be diffusion due to an intrinsic limitation of Eulerian methods:

vorticity can only be represented at discrete locations in space.

Firstly, vortices whose size is below the Nyquist limit of the mesh will be subject to aliasing.

Furthermore, all vortices, regardless of size, are affected by re-sampling errors as they move through

the mesh. The following example illustrates why. Consider the 1D piecewise-linear curve shown

in Figure3.13(left), represented by values at discrete sample locations along thex-axis. The curve

undergoes some translation and then is re-sampled at the original sample locations, yielding a new

piecewise-linear curve representing the state of the field at timet+ dt. The process is then repeated

using this new curve as the starting point, and so on. At each step the curve gets shorter and wider,

and would eventually, att = ∞, become a straight line. (Importantly, even though the function

diffuses, the total integral remains constant.)

i = 0

i = 0..20

i = 1 i = 2 i = 3 i = 4 i = 20

Figure 3.13:Re-sampling Errors: A curve moving through an Eulerian grid loses its shape over
time due to inadequate reconstruction. The red line in each plot is curve(i − 1) after translation
but before re-sampling.

This is, in effect, using a triangle reconstruction filter, which is a low-pass filter that aggressively
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attenuates even the lower frequencies ([2]). Although this 1D example is not a strictly accurate

analogy (because we sample the velocity field, not the vorticity field), it gives a general idea of what

is happening. We are currently investigating higher order interpolants to help address this problem.

Another area of future work currently being pursued is the derivation of a variational approach

that would preserve energy by construction. As we have seen, a projection or any other such global

“post-process” is not the best way to satisfy the conservation laws governing a physical system (see

Fig. 3.4(c) and Fig.3.8(d)). Methods that instead satisfy these properties intrinsically, as ours does

with vorticity, exhibit much more accurate and predictable behavior.

3.5 Conclusion

For Computer Graphics applications, the capability of tetrahedral meshes to more effectively resolve

domain boundaries is a significant advantage of our method over regular grid based techniques. It

allows us to create a very convincing “smoking bunny” animation, for example, at interactive frame

rates. Discretizing this domain with hexahedral cells would require significantly more elements and

consequently much more time to simulate.

Simulation on curved surfaces has many applications to areas such as special effects and texture

generation, for example. Existing methods for addressing this require manipulation of parameter-

izations and associated Jacobians (see, for example, [31]). Thanks to the intrinsic nature of the

variables and operators we use, our algorithm can be applied directly, without modification, to

curved domains.

We have also assessed the applicability of this approach to numerical simulation. The remark-

able similarity between our results and the results of physical experiments (Fig.3.4) confirms the

validity of our discrete differential approach. Although our method is susceptible to discretization

errors, accuracy improves roughly linearly with mesh element size, as expected.

Recommendations Based on the results observed in Sections3.2 and3.3 we are able to priori-

tize certain parameters over others in terms of their effect on accuracy vs. computation time. First,

increasing mesh resolution effectively and predictably increases the accuracy of the resulting sim-

ulation, as does increasing the number of quadrature samples. The relative cost of each, though,

depends on the size of the mesh. Most of the algorithm involves local operations, so increasing the

number of cells affects only the Poisson solver. The running time of the Poisson solver (which, in
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our case, uses the Conjugate Gradient method) scales asO(E1.5) with the number of edges (vertices

in 2D) in the mesh. The numerical integration contributesO(qF ) to the total running time, where

q is the number of quadrature samples per dual edge. Therefore, for small mesh sizes the greatest

benefit vs. cost is gained by increasing the mesh size, and for large meshes more samples should be

added instead.

For applications with less emphasis on physical accuracy and more concern for producing vi-

sually convincing simulations, we recommend first choosing a mesh size based on the size of the

features that would be resolved, and then increasing the number of samples based on desired running

time. We also recommend the use of the piecewise-constant interpolant for path tracing through the

velocity field. If the mesh element size is small relative to the features of the vorticity field, there is

no perceptible difference between this and the RK2 path tracer.
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Chapter 4

Implementation of a Simplicial Complex
Data Structure

The presentation of the fluid simulation algorithm in the previous chapter is intended to be as self-

contained as possible. Despite the (possibly intimidating) mathematical theory that went into deriv-

ing the algorithms, in the end they lead to a simple, elegant, and straightforward implementation.

Although there is sufficient detail about the algorithm itself, readers interested in implementing it

should note that the algorithm presumes the existence of a suitable simplicial complex data struc-

ture. Such a data structure needs to support local traversal of elements, adjacency information for all

dimensions of simplices, a notion of adual mesh, and all simplices must beoriented. Unfortunately,

most publicly available tetrahedral mesh libraries provide onlyunorientedrepresentations with lit-

tle more than vertex-tet adjacency information (while we need vertex-edge, edge-triangle, edge-tet,

etc.). For those eager to implement and build on this and other algorithms based on Discrete Exte-

rior Calculus without having to worry about these details, we discuss here an implementation of a

DEC-friendly tetrahedral mesh data structure.

4.1 Motivation

Extending a classic pointer-based mesh data structure to 3D is unwieldy, error-prone, and difficult

to debug. We instead take a more abstract set-oriented view in the design of our data structure, by

turning to the formal definition of an abstract simplicial complex. This gives our implementation

the following desirable properties:

� We treat the mesh as a graph and perform all of our operations combinatorially.

� There is no cumbersome pointer-hopping typical of most mesh data structures.
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� The design easily generalizes to arbitrary dimension.

� The final result is very compact and simple to implement.

In effect we are taking advantage of the fact that during assembly of all the necessary structures

one can use high level, abstract data structures. That way formal definitions can be turned into code

almost verbatim. While these data structures (e.g., sets and maps) may not be the most efficient for

computation, an approach which uses them during assembly is far less error prone. Once every-

thing has been assembled it can be turned easily into more efficient packed representations (e.g.,

compressed row storage format sparse matrices) with their more favorable performance during the

actual computations which occur,e.g., in physical simulation.

face

face

face
face

Figure 4.1:Some typical examples of 2D mesh representations (from [18]; used with permission).
Such pointer-based data structures become quite difficult to manage once they are extended to 3D.

We will begin with a few definitions in Section4.2, and see how these translate into our tuple-

based representation in Section4.3. The boundary operator, described in Section4.4, facilitates

mesh traversal and implements the discrete exterior derivative. We show how everything is put

together in Section4.5. Finally, we discuss our implementation of the DEC operators in Section4.6.

4.2 Definitions

We begin by recalling the basic definitions of the objects we are dealing with. The focus here

is on the rigorous mathematical definitions in a form which then readily translates into high level

algorithms. The underlying concepts are simply what we all know informally asmeshesin either

two (triangle) or three (tet) dimensions.

Simplices A simplexis a general term for an element of the mesh, identified by its dimension.

0-simplices are vertices,1-simplices are edges,2-simplices are triangles, and3-simplices are tetra-
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hedra.

Abstract Simplicial Complex This structure encodes all the relationships between vertices, edges,

triangles, and tets. Since we are only dealing with combinatorics here the atomic element out of

which everything is built are the integers0 ≤ i < n referencing the underlying vertices. For now

they do not yet have point positions in space. Formally, an abstract simplicial complex is aset of

subsetsof the integers0 ≤ i < n, such that if a subset is contained in the complex then so are all

its subsets. For example, a 3D complex is a collection of tetrahedra (4-tuples), triangles (3-tuples),

edges (2-tuples), and vertices (singletons), such that if a tetrahedron is present in the complex then

so must be its triangles, edges, and vertices. All our simplicial complexes will be proper three or

two manifolds, possibly with boundary and may be of arbitrary topology (e.g., containing voids and

tunnels).

Manifold The DEC operators that we build on are defined only on meshes which represent man-

ifolds. Practically speaking this means that in a 3D simplicial complex all triangles must have two

incident tets only (for a boundary triangle there is only one incident tet). Every edge must have a

set of tets incident on it which form a single “ring” which is either open (at the boundary) or closed

(in the interior). Finally for vertices it must be true that all incident tets form a topological sphere

(or hemisphere at the boundary). These properties should be asserted upon reading the input. For

example, for triangles which bound tets one must assert that each such triangle occurs in at most

two tets. For an edge the “ring” property of incident tets can be checked as follows. Start with one

incident tet and jump across a shared triangle to the next tet incident on the edge. If this walk leads

back to the original tetand all tets incident on the edge can thusly be visited, the edge passes the

test. (For boundary edges such a walk starts at one boundary tet and ends at another.) The test for

vertices is more complex. Consider all tets incident on the given vertex. Using the tet/tet adjacency

across shared triangles one can build the adjacency graph of all such tets. This graph must be a

topological sphere (or hemisphere if the vertex is on the boundary).

Since we need everything to be properly oriented we will only alloworientablemanifolds (i.e.,

no Möbius strips or Klein bottles).

Regularity To make life easier on ourselves we also require the simplicial complex to bestrongly

regular. This means that simplices must not have identifications on their boundaries. For example,
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edges are not allowed to begin and end in the same vertex. Similarly, the edges bounding a triangle

must not be identified nor do we allow edges or triangles bounding a tet to be identified. In practice

this is rarely an issue since the underlying geometry would need to be quite contorted for this to

occur. Strictly speaking though such identifications are possible in more general, abstract settings

without violating the manifold property.

Embedding It is often useful to distinguish between thetopology(neighbor relationships) and

thegeometry(point positions) of the mesh. A great deal of the operations performed on our mesh

can be carried out using only topological information,i.e., without regard to the embedding. The

embedding of the complex is given by a mapp : [0, n) 7→ (x, y, z) ∈ R3 on the vertices (which

is extended piecewise linearly to the interior of all simplices). For example, when we visualize

a mesh as being composed of piecewise linear triangles (for 2D meshes) or piecewise linear tets,

we are dealing with the geometry. Most of the algorithms we describe below do not need to make

reference to this embedding. When implementing these algorithms it is useful to only think in terms

of combinatorics. There is only one stage where we care about the geometry: the computation of

metric dependent quantities needed in the definition of the Hodge star.

4.3 Simplex Representation

Ignoring orientations for a moment, eachk-simplex is represented as a(k + 1)-tuple identifying

the vertices that bound the simplex. In this view a tet is simply a4-tuple of integers, a triangle is a

3-tuple of integers, an edge is a2-tuple, and a vertex is a singleton. Note that all permutations of

a given tuple refer to the same simplex. For example,(i, j, k) and(j, i, k) are differentaliasesfor

the same triangle. In order to remove ambiguities, we must designate onerepresentativealias as

the representation of the simplex in our data structures. We do this by using thesortedpermutation

of the tuple. Thus each simplex (tuple) is stored in our data structures as its canonical (sorted)

representative. Then if we, for example, need to check whether two simplices are in fact the same

we only need to compare their representatives element by element.

All this information is stored in lists we designateV, E, F, andT. They contain one represen-

tative for every vertex, edge, triangle, and tet, respectively, in the mesh.
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4.3.1 Forms

The objects of computation in an algorithm using DEC are forms. Formally, a differentialk-form is

a quantity that can be integrated over ak dimensional domain. For example, consider the expression∫
f(x)dx (x being a scalar). The integrandf(x)dx is called a1-form, because it can be integrated

over any1-dimensional interval. Similarly, thedA in
∫ ∫

dA would be a2-form.

Discrete differential forms are dealt with by storing the results of the integrals themselves, in-

stead of the integrands. That is, discretek-forms associate one value with eachk-simplex, rep-

resenting the integral of the form over that simplex. With this representation we can recover the

integral over anyk-dimensional chain (the union of some number ofk-simplices) by summing the

value on each simplex (using the linearity of the integral).

Since all we have to do is to associate one value with each simplex, for our purposes forms

are simply vectors of real numbers where the size of the vector is determined by the number of

simplices of the appropriate dimension.0-forms are vectors of size|V|, 1-forms are vectors of size

|E|, 2-forms are vectors of size|F|, and3-forms are vectors of size|T|. Such a vector representation

requires that we assign an index to each simplex. We use the position of a simplex in its respective

list (V, E, F, or T) as its index into the form vectors.

4.3.2 Orientation

Because the vectors of values we store represent integrals of the associatedk-form over the under-

lying simplices, we must keep track of orientation. For example, reversing the bounds of integration

on
∫ b
a f(x)dx flips the sign of the resulting value. To manage this we need anintrinsic orientation

for each simplex. It is with respect to this orientation that the values stored in the form vectors

receive the appropriate sign. For example, suppose we have a1-form f with valuefij assigned to

edgee = (i, j); that is, the real numberfij is the integral of the1-form f over the line segment

(pi, pj). If we query the value of this form on the edge(j, i) we should get−fij .

Hence every tuple must be given a sign indicating whether it agrees (+) or disagrees (−) with

the intrinsic orientation of the simplex. Given a set of integers representing a simplex, there are two

equivalence classes of orderings of the given tuple: the even and odd permutations of the integers in

question. These two equivalence classes correspond to the two possible orientations of the simplex

(see Fig.4.2).

Note that assigning a sign to any one alias (i.e., the representative) implicitly assigns a sign to
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all other aliases. Let us assume for a moment that the sign of all representatives is known. Then the

signS of an arbitrary tuplet, with representativer, is

S(t) =

 S(r) if t is in the same equivalence class asr

−S(r) if t is in the opposite equivalence class.

More formally, letP be the permutation that permutest into r (i.e., r = P (t)). Then

S(t) = S(P )S(P (t)).

HereS(P ) denotes the sign of the permutationP with +1 for even and−1 for odd permutations.

All that remains, then, is to choose an intrinsic orientation for each simplex and set the sign

of the representative alias accordingly. In general the assignment of orientations is arbitrary, as

long as it is consistent. For all subsimplices we choose the representative to be positively oriented,

so that the right-hand-side of the above expression reduces toS(P ). For top-level simplices (tets

in 3D, triangles in 2D), we use the convention that a positive volume corresponds to a positively

oriented simplex. We therefore require a volume form which, together with an assignment of points

to vertices, will allow us to orient all tets. Recall that a volume form accepts three (for 3D; two

for 2D) vectors and returns either a positive or negative number (assuming the vectors are linearly

independent). So the sign of a4-tuple is:

S(i0, i1, i2, i3) = S(Vol(pi1 − pi0 , pi2 − pi0 , pi3 − pi0)).

i

  (i,j,k)
  (j,k,i)
–(j,i,k)

  (j,i,k)
  (i,k,j)
–(i,j,k)

j

k

i

j

k

...
...

Figure 4.2: All permutations of a triple(i, j, k) refer to the same triangle, and the sign of the
permutation determines the orientation.
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4.4 The Boundary Operator
The facesof a k-simplex are the(k − 1)-simplices that are incident on it,i.e., the subset of one

lower dimension. Everyk-simplex hask + 1 faces. Each face corresponds to removing one integer

from the tuple, and the relative orientation of the face is(−1)i wherei is the index of the integer

that was removed. To clarify:

� The faces of a tet+(t0, t1, t2, t3) are−(t0, t1, t2), +(t0, t1, t3),−(t0, t2, t3), and+(t1, t2, t3).

� The faces of a triangle+(f0, f1, f2) are+(f0, f1),−(f0, f2), and+(f1, f2).

� The faces of an edge+(e0, e1) are−(e0) and+(e1).

We can now define the boundary operator∂ which maps simplices to their their faces. Given

the set of tetsT we define∂3 : T→ F4 as

∂3(+(i0, i1, i2, i3)) = {−(i0, i1, i2),+(i0, i1, i3),

−(i0, i2, i3),+(i1, i2, i3)}.

Similarly for ∂2 : F→ E3 (which maps each triangle to its three edges) and∂1 : E→ V2 (which

maps each edge to its two vertices).

We represent these operators as sparse adjacency matrices (or, equivalently, signed adjacency

lists), containing elements of type+1 and−1 only. So∂3 is implemented as a matrix of size

|F| × |T| with 4 non-zero elements per column,∂2 an |E| × |F| matrix with 3 non-zero elements

per column, and∂1 a |V| × |E|matrix with2 non-zero elements per column (one+1 and one−1).

The transposes of these matrices are known as thecoboundaryoperators, and they map simplices to

their cofaces—neighbor simplices of one higher dimension. For example,(∂2)T maps an edge to

the “pinwheel” of triangles incident on that edge.

Figure 4.3:The boundary operator identifies the faces of a simplex as well as theirrelativeori-
entations. In this illustration, arrows indicate intrinsic orientations and signs indicate the relative
orientation of a face to a parent.

These matrices allow us to iterate over the faces or cofaces of any simplex, by walking down

the columns or across the rows, respectively. In order to traverse neighbors that are more than one

dimension removed (i.e., the tets adjacent to an edge or the faces adjacent to a vertex) we simply
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concatenate the appropriate matrices, but without the signs. (If we kept the signs in the matrix

multiplication any such consecutive product would simply return the zero matrix reflecting the fact

that the boundary of a boundary is always empty.)

4.5 Construction
Although we still need a few auxiliary wrapper and iterator data structures to provide an interface to

the mesh elements, the simplex lists and boundary matrices contain the entirety of the topological

data of the mesh. All that remains, then, is to fill in this data.

We read in our mesh as a list of(x, y, z) vertex positions and a list of4-tuples specifying the

tets. Reading the mesh in this format eliminates the possibility of many non-manifold scenarios; for

example, there cannot be an isolated edge that does not belong to a tet. We assume that all integers

in the range[0, n) appear at least once in the tet list (this eliminates isolated vertices), and no integer

outside of this range is present.

OnceT is read in, buildingE andF is trivial; for each tuple inT, append all subsets of size

2 and3 to E andF respectively. We must be sure to avoid duplicates, either by using a unique

associative container, or by sorting the list afterward and removing duplicates. Then the boundary

operator matrices are constructed as follows:

for each simplexs

construct a tuple for each facef of s as described in Section4.4

determine the indexi of f by locating its representative

set the entry of the appropriate matrix at rowi, columns to S(f)

Figure4.4shows a complete example of a mesh and its associated data structure.

4.6 DEC Operators

Now we discuss the implementation of the two most commonly used DEC operators: the exterior

derivative and the Hodge star. As we will see, in the end these also amount to nothing more than

sparse matrices that can be applied to our form vectors.



41

1

0

1
2

0 5

76

4
8

3
3

2

4
30 4

1

2

5

6

V E F T
[0] [0, 1] [0, 1, 2] [0, 1, 2, 3]
[1] [0, 2] [0, 1, 3] [1, 2, 3, 4]
[2] [0, 3] [0, 2, 3]
[3] [1, 2] [1, 2, 3]
[4] [1, 3] [1, 2, 4]

[1, 4] [1, 3, 4]
[2, 3] [2, 3, 4]
[2, 4]
[3, 4]

∂3 =



−1
1
−1

1 −1
1
−1

1



∂2 =



1 1
−1 1

−1 −1
1 1 1

1 −1 1
−1 −1

1 1 1
1 −1

1 1



∂1 =


−1 −1 −1

1 −1 −1 −1
1 1 −1 −1

1 1 1 −1
1 1 1



Figure 4.4:A simple mesh and all associated data structures.

4.6.1 Exterior Derivative

As we have seen earlier in the course, the discrete exterior derivative is defined using Stokes’ theo-

rem such that ∫
σ
dω =

∫
∂σ
ω

whereω is ak-form, andσ is a(k + 1)-simplex. In words, this equation states that the evaluation

of dω on a simplex is equal to the evaluation ofω on the boundary of that simplex.

Let us try to understand this theorem with a few examples. Consider a0-form f , i.e., a function

giving values at vertices. With that,df is a1-form which can be integrated along an edge (say with
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endpoints denoteda andb) and Stokes’ theorem states the well known fact

∫
[a,b]

df = f(b)− f(a).

The right hand side is simply the evaluation of the0-form f on the boundary of the edge (i.e., its

endpoints), with appropriate signs indicating the orientation of the edge.

What about triangles? Iff is a 1-form (one value per edge), thendf is a 2-form that can be

evaluated on a triangleabc as

∫
∆abc

df =
∫

∂(∆abc)
f

=
∫

[a,b]
f +

∫
[b,c]

f +
∫

[c,a]
f

= fab + fbc + fca

using the subscript notation from Section4.3.2. Again, the right hand side is simply the evaluation

of the1-form f on the boundary of the triangle—its three edges.

We can restate the general form of the theorem for our discrete forms as

dωσ =
∑
s∈∂σ

ωs

Written this way, it is easy to see that this can be implemented as the multiplication of a form vector

by the coboundary matrix∂T .

4.6.2 The Dual Mesh and the Hodge Star

Every complex has a dual. The dual of a simplicial complex is acell complexwhere primalk-

simplices correspond to dual(n − k)-cells. So in our case there are|V| dual polyhedra,|E| dual

polygons,|F| dual edges, and|T| dual vertices, corresponding to primal vertices, edges, triangles,

and tetrahedra, respectively (see Fig.2.2). Note that, since every dual cell is co-located with a primal

simplex and the cardinality is the same, in the code there is no explicit representation for the dual

mesh. Where appropriate, dual cells are queried through the corresponding primal simplex index.

The operator that transforms a primalk-form into a dual(n − k)-form is known as theHodge

star. There are many different kinds of Hodge stars, the simplest of which is thediagonal Hodge

star.
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We again attempt to motivate the definition with some intuition. When transferring a quantity

from a primal simplex to a dual cell, the quantities must “agree” somehow. Since these are integral

values, simply setting the value on the dual to be equal to the value on the primal does not make

sense, as the domain of integration is unrelated. Instead, we require that theintegral densitybe

equal. So, ifω denotes the evaluation of a form on a primalk-simplexσ, then?ω is the value on

the dual(n− k)-cell σ̃ such that
ω

Vol(σ)
=

?ω

Vol(σ̃)

allowing us to define? as

? =
Vol(dual)

Vol(primal)
.

In effect the diagonal Hodge star requires that the averages of the integrand over the respective

domains agree.

This is represented as a diagonal matrix so that, again, application of the operator becomes a

simple matrix-vector multiplication. Note that when transforming quantities from the dual to the

primal, the inverse of this matrix is used. Since the matrix is diagonal we only store the diagonal

entries. There are as many of these as there are simplices of the appropriate dimension. Conse-

quently the diagonal Hodge star can be represented with vectors of length|V|, |E|, |F|, and|T|

respectively.

4.6.2.1 Calculating Dual Volumes

So far the entire implementation has been in terms of the combinatorics of the mesh, but when

constructing the Hodge star we must finally introduce the geometry. After all, the purpose of the

Hodge star is to capture the metric. The volumes of the primal simplices are straightforward:1

for vertices, length for edges, area for triangles, and volume for tetrahedra. The dual volumes

are similarly defined, but in order to avoid constructing the graph of the dual mesh explicitly, we

calculate the dual volumes as follows.

If we use the circumcentric realization of the dual mesh (i.e., dual vertices are at the circum-

centers of the associated tets), we can exploit the following facts when calculating the dual vol-

umes.1

1 Circumcentric duals may only be used if the mesh satisfies the Delaunay criterion. If it does not, a barycentric dual
mesh may be used. However, care must be taken if a barycentric dual mesh is used, as dual edges are no longer straight
lines (they are piecewise linear), dual faces are no longer planar, and dual cells are no longer necessarily convex.
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� A dual edge (dual of a primal trianglet) is linear, is normal tot, and is collinear with the

circumcenter oft (though the line segment need not necessarily pass throught).

� A dual polygon (dual of a primal edgee) is planar, is orthogonal toe, and is coplanar with the

center ofe (though it need not intersecte).

� A dual cell (dual of a primal vertexv) is the convex intersection of the half-spaces defined by

the perpendicular bisectors of the edges incident onv.

Just as with primal vertices, the volume of a dual vertex is defined to be1. For the others, we

can conceptually decompose each cell into pieces bounded by lower dimensional cells, and sum the

volumes of the pieces. For example, a dual polyhedron can be seen as the union of some number

of pyramids, where the base of each pyramid is a dual polygon and the apex is the primal vertex.

Similarly, a dual polygon can be seen as a union of triangles with dual edges at the bases, and dual

edges can be seen as a union of (two) line segments with dual vertices at the bases. The following

pseudocode illustrates how the volumes are calculated.
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vec3C( Simplexs ); // gives the circumcenter ofs

// Initialize all dual volumes to 0.

// Dual edges

for each primal trianglef

for each primal tettf incident onf

b← tf .dualVolume // 1

h← ||C(f)− C(tf )||

f.dualVolume← f.dualVolume+ 1
1bh

// Dual polygons

for each primal edgee

for each primal trianglefe incident one

b← fe.dualVolume

h← ||C(e)− C(fe)||

e.dualVolume← e.dualVolume+ 1
2bh

// Dual polyhedra

for each primal vertexv

for each primal edgeev incident onv

b← ev.dualVolume

h← ||C(v)− C(ev)||

v.dualVolume← v.dualVolume+ 1
3bh

Note that, even when dealing with the geometry of the mesh, this part of the implementation still

generalizes trivially to arbitrary dimension.

4.7 Summary

All the machinery discussed above can be summarized as follows:

� k-forms as well as the Hodge star are represented as vectors of length|V|, |E|, |F|, and|T|;

� the discrete exterior derivative is represented as (transposes of) sparse adjacency matrices con-

taining only entries of the form+1 and−1 (and many zeros); the adjacency matrices are of
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dimension|V| × |E| (boundary of edges),|E| × |F| (boundary of triangles), and|F| × |T|

(boundary of tets).

In computations these matrices then play the role of operators such as grad, curl, and div and can be

composed to construct operators such as the Laplacian (and many others).

While the initial setup of these matrices is best accomplished with associative containers, their

final form can be realized with standard sparse matrix representations. Examples include a com-

pressed row storage format, a vector of linked lists (one linked list for each row), or a two di-

mensional linked list (in effect, storing the matrix and its transpose simultaneously) allowing fast

traversal of either rows or columns. The associative containers store integer tuples together with

orientation signs. For these we suggest the use of sorted integer tuples (the canonical representa-

tives of each simplex). Appropriate comparison operators needed by the container data structures

simply perform lexicographic comparisons.

And that’s all there is to it!
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Chapter 5

Conclusion

In this thesis we have presented a novel theoretical approach to fluid dynamics, along with its

practical implementation and various simulation results. We have carefully discretized the physics

of flows to respect the most fundamental geometric structures that characterize their behavior.

Amongst the several specific benefits that we demonstrated, the most important is the circulation

preservation property of the integration scheme, as evidenced by our numerical examples. The

discrete quantities we used are intrinsic, allowing us to go to curved manifolds with no additional

complication. Finally, the machinery employed in our approach can be used on any simplicial com-

plex. We wish to emphasize, however, that the same methodology also applies directly to more

general spatial partitionings, and in particular, to regular grids and hybrid meshes [11]—rendering

our approach widely applicable to existing fluid simulators.

For future work, a rigorous comparison of the current method with standard approaches should

be undertaken. Using Bjerknes’ circulation theorem for compressible flows may also be an inter-

esting avenue. Finally, we limited ourselves to the investigation of our scheme without focusing on

the separate issue of order of accuracy. Coming up with an integration scheme that is higher-order

accurate will be the object of further investigation, as it requires a better (denser) Hodge star.
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Appendix A

Discrete Operators

A.1 Discrete Exterior Derivative

A key ingredient to defining the discrete version of the exterior derivatived is Stokes’ theorem:

∫
σ
dα =

∫
∂σ
α,

whereσ denotes a(k + 1)-cell andα is ak-form. Stokes’ theorem states that the integral ofdα

(a (k + 1)-form) over a(k + 1)-cell equals the integral of thek-form α over theboundaryof the

(k + 1)-cell (i.e., a k-cell). Stokes’ theorem can thus be used as a way todefinethed operator in

terms of the boundary operator∂. Or, said differently, once we have the boundary operator, the

operatord follows immediately if we wish Stokes’ theorem to hold on the simplicial complex.

To use a very simple example, consider a0-form f , i.e., a function giving values at vertices.

With that,df is a 1-form which can be integrated along an edge (say with end points denoteda and

b) and Stokes’ theorem states the well known fact:

∫
[a,b]

df = f(b)− f(a).

The right hand side is simply the evaluation of the0-form f on the boundary of the edge,i.e., its

endpoints (with appropriate signs indicating the orientation of the edge). Actually, one can define a

hierarchy of these operators that mimic the operators given in the continuous setting by the gradient

(∇), curl (∇×), and divergence (∇·), namely,

� d0: maps0-forms to1-forms and corresponds to theGradient modulo a Hodge star;

� d1: maps1-forms (values on edges) to2-forms (values on faces). The value on a given face is
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simply the sum (by linearity of the integral) of the1-form values on the boundary (edges) of the

face with the signs chosen according to the local orientation.d1 corresponds to theCurl modulo

a Hodge star;

� d2: maps2-forms to3-forms and corresponds to theDivergencemodulo a Hodge star.

A.2 Discrete Laplacian

We have seen in Section2.5how the vorticity can be directly derived from the set of all face fluxes.

However, during the simulation, we will also need to recover fluxfromvorticity. For this we employ

the Helmholtz-Hodge decomposition theorem, stating that any vector fieldu can be decomposed

into three components (given appropriate boundary conditions)

u = ∇× φ+∇ψψψ + h. (A.1)

When represented in terms of discrete forms this reads as follows:

U = dΦ + ?d ?Ψ +H (A.2)

For the case of incompressible fluids (i.e., with zero divergence), two of the three components are

sufficient to describe the velocity field: the curl of a vector potential and a harmonic field. This

implies that when decomposing the 2-formU , we may setΨ to 0. If the topology of the domain

is trivial, we can furthermore ignore the harmonic partH (we discuss a full treatment of arbitrary

topology in Section2.5.4), leaving us withU = dΦ.

Thus, we can recover the velocity field solely from the vorticity by solving a Poisson equation to

get the vector potentialΦ and then applying the curl operator to the potential. The Poisson equation

to solve for the 1-formΦ (values on primal edges) is as follows:

(?d?−1dT ?+dT ? d)Φ = dT ? U = Ω (A.3)

To arrive at this equation, we appliedd? to both sides of Eq. (A.2), and set the gauge of this Poisson

problem asdT ? Φ = 0. As the Laplacian∆ in differential calculusis d ? d ? + ? d ? d, one can

readily verify that the previous equation is, indeed, a discrete version of the Poisson equation. It

literally corresponds to∆φ = (∇∇· −∇×∇×)φ = ∇×u. Notice that the left-side matrix (that we
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will denoteL) is symmetric and sparse, thus ideally suited for fast numerical solvers.

Our linear operators (and, in particular, the discrete Laplacian) differ from another discrete Pois-

son setup on simplicial complexes proposed in [33]: the ones we use have smaller support, which

results in sparser and better conditioned linear systems [3]—an attractive feature in the context of

numerical simulation.
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