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Chapter 1

Introduction

The problem of finding surfaces of minimum energy was first proposed by J. L. Lagrange and later

J.C. Borda in the second half of the 18th century [Nit75]. In the middle of the 19th century J. Plateau

motivated a physical analogy between soap bubbles and minimum membrane energy surfaces [Nit75].

Starting in the middle of the 20th century the computer was used for engineering applications such

as the fairing of ship hull designs [Tip98].

The past decade has seen a lot of activity in the computer graphics community aimed at finding

good algorithms that compute surfaces satisfying different fairness criteria. While there is no gener-

ally accepted definition of fairing, it usually involves the minimization of an energy functional with

respect to given constraints. One reason motivating this new research is the growth of parameters

of surfaces that today’s computers are capable of handling. Fairing is an operation that promises

the (semi-) automatic generation of smooth, high quality surfaces. It is unrealistic to expect a hu-

man designer to create such a surface, if more than just a few free parameters are involved. Other

applications involving energy functionals include surface estimation or physically based simulation

[GKS02].

In addition to the order of derivatives involved, energy functionals are classified as either sim-

plified and parametrization dependent (but quite fast) or as based on parametrization independent

quantities of the surface (being highly nonlinear and difficult to handle). As an example the equi-

librium of a thin, elastic wooden spline used by draughtsmen for centuries is characterized by the

smooth curve minimizing ∫1
0

(κ(t))2 dt. (1.1)

This functional involves second derivatives and is parametrization independent.

Most of the previous work based on smooth surfaces used tensor product B-splines of degrees 3 to

5 to represent the surface (see for instance [MS92] and [GLW96]). The high degree of smoothness of
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these surfaces and consequently of the involved integrands allowed the relatively efficient numerical

evaluation of the energy integrals using high order two-dimensional quadrature rules. In [MS92]

central differences where used to approximate the partial derivatives of the exact energy functionals.

Central differences are notoriously expensive operations. A lot of effort has been made to avoid

computing them [NW99]. Many applications vastly benefit from easily evaluated gradients and

Hessians of the energies.

Subdivision surfaces became increasingly popular in the past decade. This was partially due

to their ease of modeling surfaces of arbitrary topology. Catmull-Clark subdivision surfaces are a

generalization of bicubic B-spline patches and it was of no surprise that research was performed to

extend the simplified energy functionals to extraordinary patches [HKD93]. Unlike bicubic B-spline

surfaces Catmull-Clark surfaces are only C1 continuous at certain points. The authors of [HKD93]

encountered difficulties and obtained diverging bending energy integrals. Fortunately the reason

for this divergence is of technical nature and not due to inherently unbounded bending energies of

subdivision surfaces. The parametrization independent curvature integrals where shown to be finite

in [RS01]. Consequently we introduce in chapter 3 corrected simplified energy functionals with help

of the characteristic map parametrization. This parametrization was first introduced in [Rei95] and

has proven itself a versatile tool for the analysis near extraordinary vertices.

The main results of this thesis are the derivation of simplified, but data dependent, energy

operators and the exact computation of their partial derivatives in chapters 4 and 5 (both of which

can be computed very quickly). The new operators scale according to the first fundamental form of

the subdivision surface and are positioned as a compromise between the extremes of the previously

used simplified and exact functionals.
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Chapter 2

Setting

In this chapter we recall general properties, which are referenced in the following chapters. The

notation is to similar the one used in [GLW96]. Einstein summation notation is used in several

formulas.

2.1 The Local Surface

The surfaces considered here are parametrized over their control mesh. The control mesh is a

polyhedral manifold of two-dimensional faces embedded in R3. We assume that each of these faces

can be parametrized over Ω ⊂ R2. This allows us to have a local parametrization of the surface

patch S : Ω→ R
3

S(ū) = S(u1, u2) = (S1(u1, u2), S2(u1, u2), S3(u1, u2))
T . (2.1)

For most of this work S refers to a single Catmull-Clark subdivision surface patch of valence N. The

symbol R is also used to denote a surface, but in general it refers to a simplified version of S.

2.1.1 Fundamental Forms of a Surface

The first fundamental form of the surface R(ū) is a 2× 2 matrix IR(ū) =
(
gij(ū)

)
with

gij(u1, u2) =< ∂iR(u1, u2), ∂jR(u1, u2) > (2.2)

The inverse of IR is I−1
R = (gij).

The second fundamental form is defined as a 2× 2 matrix IIR = (hij) with entries

hij =< ∂i∂jR,NR > (2.3)
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where NR = ∂1R×∂2R
‖∂1R×∂2R‖ is the normal of the surface R(u1, u2).

Finally the Christoffel symbols of the surface R at parameter value ū are defined as

Γkij = gkl < ∂i∂jR, ∂lR > . (2.4)

We often express the Christoffel symbols as two 2x2 matrices Γ1 = (Γ1ij) and Γ2 = (Γ2ij).

2.1.2 Derivatives with Respect to a chosen Parametrization

The gradient of a scalar function h(ū) : Ω→ R, which is considered defined on the reference surface

R(ū), is computed as

gradR(h) = gjk∂kh∂jR. (2.5)

and in matrix notation gradR(h) = (∂1h, ∂2h) · I−1R · (∂1R, ∂2R)T . In this document all gradients are

considered to be row-vectors.

The Hessian of h with respect to the reference surface R is given as

HessR(h) =

 g1l(∂1∂lh− ∂ihΓ
i
1l) g1l(∂2∂lh− ∂ihΓ

i
2l)

g2l(∂1∂lh− ∂ihΓ
i
1l) g2l(∂2∂lh− ∂ihΓ

i
2l)

 (2.6)

and in matrix notation HessR(h) = I−1R ·
(
Hess(h) − (∂1hΓ

1 + ∂2hΓ
2)
)
.

All matrices in the last equation are symmetric. But the product of two symmetric matrices

doesn’t need to be symmetric. This means while HessS(Si) is symmetric1, it is not valid to assume

the symmetry of HessR(h) for arbitrary reference surfaces R and functions h.2

2.1.3 Curvatures of the Surface

The derivatives of a parametrized surface are not very good indicators for the behavior of the surface.

The main reason is the dependence of the derivatives on the chosen parametrization. Better suited

are quantities, that are independent of the parametrization, as the principal curvatures κ1, κ2, the

mean curvature 1
2 (κ1 + κ2) or the Gaussian curvature κ1 · κ2. The principal curvatures of S(ū) are

the eigen values of the matrix I−1
S · IIS

Our main interest is focused on the functional
∫
Ω
κ21 + κ22 dω. This integrand is given [GLW96]

1The Weingarten map I−1
S · IIS is self-adjoint, see [Tho79], page 58.

2Example: R(u1, u2) = (u1, 2u2, 0) and h(u1, u2) = u1 · u2.
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by

3∑
i=1

trace
(
HessS(Si) ·HessS(Si)T

)
= κ21 + κ22. (2.7)

2.2 Data Dependent Energies

The data dependent membrane or stretching energy of a surface S with respect to the reference

surface R is defined as

Ememb
R (S) =

3∑
i=1

∫
Ω

gradR(Si) · gradR(Si)
T dωR. (2.8)

The data dependent bending energy3 of a patch S with respect to the induced parametrization of R

is defined as

Ebend
R (S) =

3∑
i=1

∫
Ω

trace(HessR(Si) ·HessR(Si)T )dωR. (2.9)

In case R(ū) = S(ū) for all ū ∈ Ω it follows from equation 2.7, that

Ebend
S (S) =

∫
Ω

κ21 + κ22 dωS, (2.10)

hence the energy functional Ebend
S (S) is independent of parametrization. It was also argued in

[GLW96], that if the fundamental forms of S and R are approximately equal for all parameter values

ū, then one can expect to have Ebend
R (S) ≈ Ebend

S (S). This observation is a major motivation for

the work presented here.

2.2.1 Rotation and Translation Invariance of ER(S)

Observe, that only the derivatives of the reference surface R are used to define ER(S). Hence ER(S)

independent of translations of R.

Let R̄ = QR, Q ∈ Mat(3, 3), be a linearly transformed version of the reference surface. It is

simple to verify that ∂iR̄ = Q · ∂iR as well as ∂i∂jR̄ = Q · ∂i∂jR. Now specifically Q be a rotation

matrix, e.g. QTQ = I. Then IR̄ = (< ∂iR̄, ∂jR̄ >)= (∂iR̄
T · QT · Q · ∂jR̄)= (< ∂iR, ∂jR >)= IR.

With the same reasoning we find the Christoffel symbols of R and R̄ to be identical. This means

that HessR(h) = HessR̄(h) and finally ER(S) = ER̄(S), e.g. the data dependent energy is invariant

under rotations of the reference surface R.
3The definition is slightly changed compared to [GLW96] due to the possible asymmetry of HessR(h). This change

is necessary to guarantee the positive semi-definiteness of JS in theorem 1 part b.
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2.3 The Stiffness Matrix K

We assume that it is possible to represent the surface S as a linear combination of finitely many

basis functions

S(u1, u2) =

M∑
i=1

Pi ·Ni(u1, u2) (2.11)

where the Pi ∈ R3 are the control points. Combining this representation of S with equations 2.8

resp. 2.9 one should observe, that trace, grad and Hess are linear with respect to the control

points Pi. This allows rewriting the energies as

ER(S) = PT · KR · P =

M∑
i,j=1

Kij · PTi · Pj (2.12)

where KP is an M×M matrix with entries defined as

Kmemb
ij =

∫
Ω

trace(gradR(Ni) · gradR(Nj)
T )dωR, (2.13)

Kbend
ij =

∫
Ω

trace(HessR(Ni) ·HessR(Nj)T )dωR. (2.14)

The concept of stiffness matrices partially separates the process of computing the energies of a

given surface from the computation of the integrals in equations 2.8 resp. 2.9. We will also see

in chapter 5 that stiffness matrices carry important information over the derivatives of the data

dependent energies.

2.4 Catmull-Clark Subdivision Surfaces

In this thesis we deal exclusively with Catmull-Clark subdivision surfaces. Nevertheless the ideas

expressed here should carry over to other subdivision surfaces as long as the derivative integrals

over regular regions exist. This is for instance the case for Doo-Sabin subdivision surfaces, which in

general are only C1.

It is known from [Sta98] that one can represent a Catmull-Clark subdivision patch with a single

extraordinary vertex of valence N (see figure 2.1) as an expansion in eigen basis of dimension M =

2N+ 8

S(u1, u2) =

M∑
i=1

Ci · φi(u1, u2). (2.15)

The φi : R → R are the eigen basis functions and the Ci are the control points Pi projected into

eigen space. It was shown also in [Sta98] that it is possible to evaluate φi and its derivatives exactly.
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Figure 2.1: Topological neighborhood of an extraordinary patch of valence 5.

A remarkable property of the eigen basis functions is the scaling relation

φi
(1
2
x
)

= λi · φi(x). (2.16)

The λi ∈ R are the eigen values of the subdivision operator. We assume sorted eigen values λi ≥ λi+1.

It is known that λ1 = 1 and λ := λ2 = λ3 > λ4 =: µ for many interesting subdivision schemes [Rei98].
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Chapter 3

Simplified Energies

In [HKD93] the choice for the reference surface R was a generic embedding of the parameter space

[0, 1]2 into R3. This simplifies the formula for the membrane energy

Ememb
[0,1]2 (S) =

∫
[0,1]2

‖∂1S(ū)‖2 + ‖∂2S(ū)‖2 dū (3.1)

and the formula for the bending energy to

Ebend
[0,1]2(S) =

∫
[0,1]2

‖∂1∂1S(ū)‖2 + 2‖∂1∂2S(ū)‖2 + ‖∂2∂2S(ū)‖2 dū. (3.2)

This selection of the reference patch R allowed the precomputation of matrices KN[0,1]2 for arbitrary

valences N. One problem with this particular choice of the parametrization are entries of KN[0,1]2

that are not well defined for N 6= 4. A few entries of the matrix K[0,1]2 , which are computed as

infinite sums, diverge.

It is known that
∫
S
κ21 + κ22 dωS < ∞ for subdivision surfaces, even if S includes extraordinary

points [RS01]. This means one can find suitable parametrizations, for which the integrals 3.1 and 3.2

won’t diverge and hence the entries of KN are well-defined. The parametrization of the subdivision

patches over their characteristic maps [Rei95] is a prime candidate.

In this chapter we will introduce the characteristic map Ch and parametrize the extraordinary

patches with help of Ch. We compute the first and second partial derivatives of the Catmull-Clark

subdivision patch S with regards to this parametrization. Using a scaling relation similar to the one

employed in [HKD93] we show that the involved stiffness integrals converge. Finally formulas for

the numerical evaluation of the stiffness matrices are given.
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3.1 Using the Characteristic Map for Parametrization

The characteristic map Ch : R2 → R
2 of a subdivision surface near an extraordinary vertex is defined

as

Ch(u1, u2) :=

 φ2(u1, u2)

φ3(u1, u2)

 . (3.3)

The φi are the eigen functions in equation 2.15, corresponding to the sub-dominant eigen value λ.

It is known that Ch is regular and injective [Rei98].

The Catmull-Clark subdivision surface is only C1 at extraordinary vertices. In most cases the

second derivatives of the eigen functions φi diverge near ū = (0, 0). This is one reason why we

want to exclude a neighborhood of (0, 0) from the integration domain and define the new domain as

L := [0, 1]2 \ [0, 12 )
2 ⊂ R2. Without significant overlap the integration domain is split into a series of

shrinking L-regions

[0, 1]2 =

∞⋃
i=0

2−i · L. (3.4)

Now we define the image of L under the characteristic map as LCh := Ch(L). Clearly

Ch([0, 1]2) =

∞⋃
i=0

λi · LCh. (3.5)

The partial derivatives of the eigen functions considered parametrized over the characteristic map

have some interesting properties

∂kφ
Ch
i (λmv̄) = ∂k(φi ◦ Ch−1)(λmv̄) = (λi/λ)

m · ∂k(φi ◦ Ch−1)(v̄) (3.6)

∂k∂lφ
Ch
i (λmv̄) = ∂k∂l(φi ◦ Ch−1)(λmv̄) = (λi/λ

2)m · ∂k∂l(φi ◦ Ch−1)(v̄). (3.7)

To compute the membrane stiffness matrix Kmemb
Ch one has to solve integrals

Kij =

∫
Ch([0,1]2)

∂1φ
Ch
i (v̄) · ∂1φCh

j (v̄) + ∂2φ
Ch
i (v̄) · ∂2φCh

j (v̄)dv̄. (3.8)

The eigen function φCh
1 (v̄) = const . Hence if i = 1 or j = 1 the integral is zero. Now let i, j > 1.

∫
Ch([0,1]2)

∂kφ
Ch
i (v̄) · ∂lφCh

j (v̄)dv̄ =

∞∑
m=0

∫
λm·LCh

∂kφ
Ch
i (v̄) · ∂lφCh

j (v̄)dv̄

=

∞∑
m=0

∫
LCh

(λi/λ)
m · ∂kφCh

i (v̄) · (λj/λ)m · ∂lφCh
j (v̄) · λmλm dv̄

= (1− λiλj)
−1

∫
LCh

∂kφ
Ch
i (v̄) · ∂lφCh

j (v̄)dv̄
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With the same arguments one can show for i, j > 3

∫
Ch([0,1]2)

∂k∂lφ
Ch
i (v̄) · ∂m∂nφCh

j (v̄) dv̄ =
(
1−

λiλj

λ2

)−1
∫
LCh

∂k∂lφ
Ch
i (v̄) · ∂m∂nφCh

j (v̄) dv̄. (3.9)

The functions φCh
2 (v̄) and φCh

3 (v̄) are linear. Hence their second partial derivatives vanish and the

left integral is zero if i ≤ 3 or j ≤ 3. For some subdivision schemes λ2 = λ3 = λ4 [Rei98]. We haven’t

analyzed, if our derivation could be adapted to these schemes.

3.1.1 Numerical Evaluation of the Membrane Energy Integrals

We want to integrate ∫
LCh

D
(
φ

Ch
i (v̄)

)
·D
(
φ

Ch
j (v̄)

)T
dv̄ (3.10)

with φ
Ch
i (v̄) := φi ◦ Ch−1(v̄), φCh

i : LCh → R. It is not trivial to compute the inverse of the

characteristic map Ch−1, hence we want to avoid doing it. Now D(φCh
i )(v̄) = D(φi ◦ Ch−1)(v̄) =

D(φi)(v̄) ·D(Ch−1)(v̄) and hence

∫
LCh

D
(
φi
)(

Ch−1(v̄)
)
·D(Ch−1)(v̄) ·

(
D
(
φj
)(

Ch−1(v̄)
)
·D(Ch−1)(v̄)

)T
dv̄. (3.11)

Substituting v̄ = Ch(ū) we get

∫
L

D
(
φi
)(

Ch−1
(
Ch(ū)

))
·D(Ch−1)

(
Ch(ū)

)
·
(
D
(
φj
)(

Ch−1
(
Ch(ū)

))
·D(Ch−1)

(
Ch(ū)

))T
·|JCh(ū)|dū

Using D(Ch−1)
(
Ch(ū)

)
=
(
D(Ch)(ū)

)−1 we arrive at a formula that does not involve Ch−1

∫
L

D(φi)(ū) ·
(
D(Ch)(ū)

)−1 · (D(φj)(ū) ·
(
D(Ch)(ū)

)−1)T · |det(D(Ch)(ū))|dū. (3.12)

3.1.2 Numerical Evaluation of the Bending Energy Integrals

This section is a little technical. The change of integration variables from LCh to L is computed. We

use Einstein notation in most expressions.

To keep the size of the formulas small, we introduce the following conventions. The variables

ū = (u1, u2) ∈ L and v̄ = (v1, v2) ∈ LCh. The characteristic map and its inverse are abbreviated as

v(ū) = Ch(ū) : L → LCh and u(v̄) = Ch−1(v̄) : LCh → L. Indices are used equivalently as sub- and

superscripts. The colon is used to denote differentiation e.g. ∂k∂lfij(ū) = fij,kl(ū).

From the last section we know that Du = (Dv)−1. This is equivalent to uk,i · v
j
,k = δ

j
i where δ is
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the Kronecker symbol. Equivalently

 u1,1 u2,1

u1,2 u2,2

 =
1

v1,1 · v2,2 − v2,1 · v1,2

 v2,2 −v2,1

−v1,2 v1,1

 (3.13)

allows us to express first partial derivatives of u in terms of first derivatives of v.

Now we compute the second partial derivatives ut,im in terms of v.

δ
j
i = uk,i · v

j
,k

0 = (uk,i · v
j
,k),m

0 = uk,im · v
j
,k + uk,i · v

j
,kq · u

q
,m

The last line is multiplied with ut,j and the first product reordered

0 = ut,j · v
j
,k · u

k
,im + ut,j · uk,i · v

j
,kq · u

q
,m

0 = δtk · uk,im + ut,j · uk,i · v
j
,kq · u

q
,m

0 = ut,im + ut,j · uk,i · v
j
,kq · u

q
,m

After appropriate renaming of the symbols we arrive at

ut,im = −vc,ab · ua,i · ub,m · ut,c. (3.14)

The right hand side involves only vc,ab and first partial derivatives of u. We already know how to

handle the latter ones with equation 3.13.

The problems that need to be solved to compute the stiffness matrix are integrals of the form

∫
LCh

φ
Ch
k,ij(v̄) · φ

Ch
l,ij(v̄) dv̄. (3.15)

Because of the growth of the terms involved we restrict our attention to the transformations necessary

for computing

∫
LCh

φ
Ch
,ij(v̄) dv̄ =

∫
Lv

(φ ◦ v),ij(v̄) dv̄

=

∫
Lv

(φ,k(u(v̄)) · uk,j(v̄)),i dv̄

=

∫
Lv

φ,ks(u(v̄)) · us,i(v̄) · uk,j(v̄) + φ,k(u(v̄)) · uk,ji(v̄) dv̄.
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After substituting v̄ = v(ū) we get

∫
L

(
φ,ks(ū) · us,i

(
v(ū)

)
· uk,j

(
v(ū)

)
+ φ,k(ū) · uk,ji

(
v(ū)

))
· |Jv(ū)| dū. (3.16)

The final formula, which depends only on derivatives of φ and v but not its inverses, is obtained by

replacing us,i and uk,ji with help of equations 3.13 and 3.14.

All functions involved in this final formula are eigen functions of the Catmull-Clark subdivision

patch parametrized over L. The eigen functions are C2 on an open neighborhood including L.

Because of the regularity of Ch [Rei95] the determinant of Ch does not vanish. As a consequence

the integrand of 3.16 (and also the integrand of 3.15) is smooth and bounded on L. Hence it is best

computed using high order quadrature rules.
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Chapter 4

First Order Data Dependent
Energies

The bending energy of a sphere Sp(r) with radius r is
∫
S
κ21+κ22dωS =

∫
S
1
r2

+ 1
r2
dωS = 2

r2
·4πr2 =

8π. The energy Ebend
Ch (Sp(r)) computed with the data independent characteristic map parametriza-

tion of the previous chapter is proportional to r2. This behavior is clearly wrong. It might not

matter in some applications, especially if the surface is scaled globally and uniformly. But if the

scaling is non-uniform in different coordinate directions or patches vary significantly in size, then

the estimate Ebend
Ch (S) can be made locally arbitrarily bad compared to Ebend

S (S).

This observation motivates the scaling of the reference surface patch according to the dimensions

of the original surface patch. This makes the energy ER(S) less dependent on the parametrization

of S [GLW96].

4.1 Linear Transformation of the Characteristic Map

Let SCh(ū) be a linearly transformed version of the characteristic map Ch(ū). The dependent energy

functional is invariant to translation. This allows moving SCh(ū) to the origin of the coordinate

system and writing the translated version of SCh(ū) as

SCh(ū) = W · Ch(ū) =


w11 w12

w21 w22

w31 w32

 ·
 φ2(ū)

φ3(ū)

 , (4.1)

The characteristic map Ch(ū) is also planar. The rotation invariance of the data dependent en-

ergy functionals allows rotating it into the x-y plane, without changing the energies. Ignoring the

z−component of the translated and rotated version of SCh(ū) the number of free parameters of the
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reference surface is reduced to

˜SCh(ū) = W̃ · Ch(ū) =

 sx sxy

0 sy

 ·
 φ2(ū)

φ3(ū)

 , (4.2)

with sx, sxy, sy ∈ R. It is easily understood, that sx, sy are scaling factors of the characteristic map

and sxy is a shearing term.

4.1.1 Influence of the Map W

It is simple to verify, that ∂iSCh(ū) = W · ∂iCh(ū). For reasons that will be obvious later, we set

V := WTW =:
[E F
F G

]
. Clearly V−1 = 1

EG−F2
·
[ G −F

−F E

]
. Now it follows, that

JSCh = |det(W̃)| · JCh = |det(V)|
1
2 · JCh and (4.3)

ISCh = DCh(ū)T ·WT ·W ·DCh(ū). (4.4)

From the latter equation we see, that the inverse of ISCh is given by

I−1
SCh =

(
DCh(ū)

)−1 · (WT ·W)−1 ·
(
DCh(ū)

)−T
. (4.5)

It is somewhat tedious, but straight forward, to check that Γ iSCh = Γ iCh. Hence we have

HessSCh(h) = I−1SCh ·
(
Hess(h) − (∂1hΓ

1 + ∂2hΓ
2)
)

(4.6)

= I−1SCh ·Q(h,Ch), (4.7)

where Q(h,Ch) is some symmetric matrix depending on h(ū) and Ch(ū), but not on W.

4.2 Precomputing the Membrane Energy Integrals

Let ū ∈ [0, 1]2 and v̄ ∈ SCh([0, 1]2). The first order data dependent membrane energy stiffness

matrix integral

Kmemb
ij =

∫
SCh([0,1]2)

D
(
φ

SCh
i (v̄)

)
·D
(
φ

SCh
j (v̄)

)T
dv̄ (4.8)

can be transformed to

∫
[0,1]2

D(φi)(ū) ·
(
DCh(ū)

)−1 · W̃−1 ·
(
D(φj)(ū) ·

(
DCh(ū)

)−1 · W̃−1
)T
· |det(W̃)| · |JCh(ū)| dū
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= |det(W̃)| ·
∫
[0,1]2

D(φi)(ū) ·
(
DCh(ū)

)−1 · W̃−1 · W̃−T ·
(
DCh(ū)

)−T ·D(φj)(ū)T · |JCh(ū)| dū

= |det(V)|
1
2 ·
∫
[0,1]2

D(φi)(ū) ·
(
DCh(ū)

)−1 · V−1 ·
(
DCh(ū)

)−T ·D(φj)(ū)T · |JCh(ū)| dū

=
|det(V)|

1
2

det(V)
·
∫
[0,1]2

D(φi)(ū) ·
(
DCh(ū)

)−1 · [ G −F

−F E

]
·
(
DCh(ū)

)−T ·D(φj)(ū)T · |JCh(ū)| dū

= |(EG− F2)|−
1
2 ·
(
E

∫
[0,1]2

fEij(ū) dū+ F

∫
[0,1]2

fFij(ū) dū+G

∫
[0,1]2

fGij(ū) dū
)

= (EG− F2)−0.5 ·
(
E · KE + F · KF +G · KG

)
ij

where the functions fEij(ū), fFij(ū) and fGij(ū) do not depend on the choice of the parameters E,

F, G (or equivalently on the choice of sx, sxy and sy). This means Kmemb
SCh can be evaluated by

precomputing three matrices KE, KF and KG and scaling them later as needed.

Comparing the first of the equations with equation 3.11 it is not hard to see, that the integrals

above can be computed exactly the same way as in the non data dependent case as sums of integrals

over L−regions.

4.3 Evaluating the Bending Energy Integrals

As in the unscaled case, we try to avoid numerical integration close to the origin, where the integrand

has poles. By definition of SCh we have SCh(2−nū) = W · Ch(2−nū) =
(
W ·

[λ 0
0 λ

]n) · Ch(ū). This

leads to the idea that the necessary change of the integration domain from 2−nL to L is governed

by the rules derived for the change of HessSCh under application of a linear map and the scaling

relations of the eigen functions. Recall, that

Kij =

∫
[0,1]2

trace
(
HessSCh

(
φi(v̄)

)
·HessSCh

(
φj(v̄)

)T) · |JSCh(v̄)| dv̄

=

∞∑
n=0

∫
2−n·L

trace
(
HessSCh

(
φi(v̄)

)
·HessSCh

(
φj(v̄)

)T) · |JSCh(v̄)| dv̄

We pick one of the integrals in the sum and fix n. Now let us examine the effects of the substitution

v̄ = 2−n · ū on the terms in HessSCh(φj(v̄)) in detail.

HessSCh(φj(v̄)) = I−1SCh(v̄) ·
(
Hess(φj(v̄)) − (∂1φj(v̄)Γ

1(v̄) + ∂2φj(v̄)Γ
2(v̄))

)
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The derivatives of the eigen functions scale as

∂kφi(2
−nū) = 2nλni · ∂kφi(ū) and (4.9)

∂k∂lφi(2
−nū) = 22nλni · ∂k∂lφi(ū). (4.10)

We can immediately write Hess(φj)(2−nū) = 22nλnj ·Hess(φj)(ū). Application of the first of these

equations to the definition of the first fundamental form yields I−1
SCh(2−nū) = (2λ)−2n · I−1

SCh(ū).

From this we reason Γkij(2
−nū) = gkl < ∂i∂jCh, ∂lCh >= 2n · Γkij(ū). Combining these three

results we get HessSCh(φj)(2
−nū) =

( λj
λ2

)n · HessSCh(φj)(ū). The Jacobian scales as before

JSCh(2−nū) = λ2n · JSCh(ū).

Now we have everything together to finalize the change of integration variables

∫
2−n·L

trace
(
HessSCh

(
φi(v̄)

)
·HessSCh

(
φj(v̄)

)T) · |JSCh(v̄)| dv̄ =∫
L

trace
(
HessSCh(φi(ū)) ·

( λi
λ2

)n
·
( λj
λ2

)n
·HessSCh(φj(ū))T

)
· λ2n · |JSCh(ū)| dū =

(λiλj
λ2

)n
·
∫
L

trace
(
HessSCh(φi(ū)) ·HessSCh(φj(ū))T

)
· |JSCh(ū)| dū. (4.11)

The last formula shows the same scaling relation as the simple bending integral 3.9.

4.3.1 Precomputing the Bending Energy Integrals

Now we want to find an efficient way to assemble the matrix KSCh. We have

K
SCh
ij =

(
1−

λiλj

λ2

)−1
∫
L

trace
(
HessSCh(φi) ·HessSCh(φj)

T
)T
dωSCh

=
(
1−

λiλj

λ2

)−1
∫
L

trace
(
Q(φi,Ch)I−1SCh · I

−1
SCh ·Q(φj,Ch)

)
· |det(V)|

1
2 dωCh

=
(
1−

λiλj

λ2

)−1

· |det(V)|
1
2 ·
∫
L

trace
(
Q(φi,Ch)DCh−1V−1DCh−1 ·

DCh−1V−1DCh−1Q(φj,Ch)
)
dωCh

Because V−1 = 1
EG−F2

·
[ G −F

−F E

]
the last integral can be rewritten as

K
SCh
ij =

(EG− F2)
1
2

(EG− F2)2
·
(
1−

λiλj

λ2

)−1
∫
L

E2 · fEEij (ū) + EF · fEFij (ū) + EG · fEGij (ū) +

F2 · fFFij (ū) + FG · fFGij (ū) +G2 · fGGij (ū)dū,
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Figure 4.1: Selecting sampling locations for E, F and G with respect to axial symmetries of the
extraordinary (left) and the regular patch (right).

where each of the functions fxx is independent of the parameters E, F and G. (This transformation

is best done using an computer algebra system.) With xx ∈ {EE, EF, EG, FF, FG,GG} this reads as

K
SCh
ij =

∑
xx

xx · (EG− F2)−1.5 ·
((
1−

λiλj

λ2

)−1 ∫
Lu
fxxij (ū)dū

)
. (4.12)

Finally this formula is used to define 6 auxiliary matrices

Kxxij =
(
1−

λiλj

λ2

)−1
∫
Lu
fxxij (ū)dū (4.13)

that are independent of W and are computed numerically with high precision in an offline process.

The 6 corresponding scaling factors are defined as cxx = xx · (EG− F2)−1.5.

4.4 Choosing the Parameters E, F and G

We have already found an interpretation for sx, sxy and sy as scaling and shearing terms of the

characteristic map. To compute E, F and G one could estimate these parameters from the subdivision

patch S using geometric properties.

There is another approach to obtain - hopefully good - values for E, F and G. It is based on the

observation, that one can fix a parameter value ūs ∈ [0, 1]2 and use the map W to translate and

rotate the reference patch SCh(ūs) into the tangential plane of the subdivision patch S(ūs). The

map W can furthermore be used to match the first partial derivatives ∂iS(ūs) = ∂iSCh(ūs), and

hence the first fundamental forms IS(ūs) = ISCh(ūs) of both patches at this particular point.

Now how should one chose ūs? The partial derivatives ∂iS and the first fundamental form IS

are continuous on [0, 1]2. Hence any point ūs ∈ [0, 1]2 is a candidate for estimating E, F and G.

The image of the characteristic map Ch(ū) has one axis of symmetry (compare with figure 4.1). It

seems to make sense to restrict the choice of ūs such that its image is on this axis. Hence ūs = (t, t)

with t ∈ [0, 1]. Now in the regular case the choice of ūs should be symmetrical with respect to all
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four corner vertices. The center ūs = (0.5, 0.5) of the regular patch is the only location to fulfill

this requirement. Unfortunately irregular patches don’t have such a unique point and it is not clear

which additional requirement would lead to an optimal choice of t.

Now recall equation 2.15. For ū = (0, 0) the partial derivatives of S are computed as

∂iS(0, 0) = ∂i

M∑
i=1

Ci · φi(0, 0) = C2 · ∂iφ2(0, 0) + C3 · ∂iφ3(0, 0). (4.14)

This is a very convenient and easily evaluated formula. The linear dependence of C2 and C3 on the

control points Pi of the extraordinary patch also simplifies the computation of the derivatives of the

energy functional ESCh(X̄) discussed in chapter 5.

4.5 Final Formulas for the Energies

The evaluation of the first order data dependent membrane energy takes the form

Ememb
SCh (P) = PT ·

(
cE(P)K

E + cF(P)K
F + cG(P)KG

)
· P, (4.15)

where cE = E · (EG− F2)−0.5, cF = F · (EG− F2)−0.5 and cG = G · (EG− F2)−0.5.

The first order data dependent bending energy is computed as

Ebend
SCh (P) = PT ·

(
cEE(P)K

EE+cEF(P)K
EF+cEG(P)KEG+cFF(P)K

FF+cFG(P)KFG+cGG(P)KGG
)
·P.

(4.16)

where cEE = EE · (EG− F2)−1.5, cEF = EF · (EG− F2)−1.5 etc.

All matrices are precomputed and the scaling factors are easily evaluated. Hence the evaluation

of the energies is dominated by memory fetch operations accessing the matrices. The run-times for

an efficient implementation will be at most 3× resp. 6× the time for evaluating the simple, not data

dependent, energies.
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Chapter 5

Derivatives of the Energy
Functionals

We want to regard the control points P of the patch S as variables. For clarity we use the identifier

X̄ for unconstrained points, while we reserve the variable P for a specific choice of the control points.

E(X̄) = X̄T · K̄ · X̄ =
[
Px Py Pz

]
·


K 0 0

0 K 0

0 0 K

 ·

Px

Py

Pz

 (5.1)

The matrix K̄ has dimension 3M×3M, where M is the number of basis functions needed to represent

the surface.

5.1 Derivatives of ECh(X̄)

Because K̄ is independent of the point-variables X̄, equation 5.1 is a multivariate polynomial in X̄i

of degree 2. Hence the gradient of ECh(X̄) is

grad(ECh(X̄)) = 2 · X̄T · K̄ (5.2)

and the Hessian

Hess(ECh(X̄)) = 2 · K̄. (5.3)

The gradient as well as the Hessian are trivial to compute. The complexity is O(M2). This is about

as expensive as a single function evaluation of ECh(X̄).



20

5.2 Derivatives of ESCh(X̄)

The matrices K̄(X̄) depend on the data X̄. This makes grad(ESCh(X̄)) nonlinear and there is no

hope that Hess(ESCh(X̄)) is constant.

A classical solution to our problem is the computation of numerical finite differences to approxi-

mate the partial derivatives of ESCh(X̄). This method has two drawbacks. The first is speed: One

has to evaluate ESCh for computing the gradient O(M) and for the Hessian O(M2) times. Because

each evaluation of ESCh is done in O(M2) steps, the computation (especially of the Hessian) is very

expensive. The second problem is accuracy: Even if ESCh is computed as in our implementation

with about 10...14 valid decimal digits, the finite difference gradient approximation will have only

about 6...7 and the Hessian about 3...5 valid leading digits. In addition to that good numerical

differencing code is not trivial to write.

A modern approach for computing derivatives of a function is given by automatic differentiation

techniques. The general idea is based on the observation, that any formula is computed using only

a finite set of unary or binary functions. This allows the automatic analysis of the data flow and

even the most complex formula is differentiated using the chain rule. While the author had none of

these tools on hand, it is reported in [NW99] that two general methods are available: one method

computes derivatives very fast, but uses potentially huge amounts of memory, while the other method

conserves memory, but is relatively slow.

In the case of ESCh(X̄) the non-linearity is quite simple to evaluate algebraically. It turns out

that it is possible to differentiate ESCh(X̄) manually and implement a direct computation of its

derivatives with little required additional memory (only O(M)) and no need of computing complex

quantities multiple times.

For simplicity let us focus on cEF(X̄) · X̄T · K̄EF · X̄. The gradient is computed as

grad(EEFSCh(X̄))k = ∂k

(
cEF(X̄)

∑
m,n

K̄EFmnX̄mX̄n

)
(5.4)

= ∂kcEF(X̄) ·
∑
m,n

K̄EFmnX̄mX̄n + cEF(X̄) · 2 ·
∑
m

K̄EFmkX̄m. (5.5)
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For the Hessian we get

Hess(EEFSCh(X̄))lk = ∂l∂k

(
cEF(X̄)

∑
m,n

K̄EFmnX̄mX̄n

)
(5.6)

= ∂l

(
∂kcEF(X̄) ·

∑
m,n

K̄EFmnX̄mX̄n + cEF(X̄) · 2 ·
∑
m

K̄EFmkX̄m

)
(5.7)

= ∂l∂kcEF(X̄) ·
∑
m,n

K̄EFmnX̄mX̄n + ∂lcEF(X̄) · 2 ·
∑
m

K̄EFmkX̄m + (5.8)

∂kcEF(X̄) · 2 ·
∑
m

K̄EFmlX̄m + cEF(X̄) · 2 · K̄EFlk . (5.9)

Evaluating the derivatives of cEF(X̄) = E(X̄)F(X̄) ·
(
E(X̄)G(X̄)−F(X̄)2

)−1.5 is the trickiest part. This

is done by recursive application of the chain- and product rules down to the level of ∂kE(X̄), ∂kF(X̄)

and ∂kG(X̄). All intermediate derivatives ∂k are stored in arrays of size 3M. No intermediate second

derivative ∂l∂k needs to be stored or computed twice.

Experiments show, that on average the evaluation of the gradient grad(ESCh(X̄)) with its 3M

entries is only 1.5 times as expensive as a single function evaluation ESCh(X̄). The evaluation of

the complete Hessian with 3M × 3M entries is only 10...15 times as expensive as a single function

evaluation. (With finite differences and valence 4 the Hessian would have been about 2500 times as

expensive as a single function evaluation achieving much less accuracy!)

The Hessian of the data dependent energy functional is not block-diagonal as the Hessian of the

simple energies in equation 5.3. The elements off-diagonal are mostly nonzero. This is an indicator,

that px, py, pz interact with help of cxx(X̄). This again has consequences for the separability of

equation systems based on the Hessian of ESCh(X̄).
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Chapter 6

Experiments

For the simple operators of chapter 3 we can assume E = 1, F = 0 and G = 1. As a first numerical

test of our implementation we have verified, that

Kmemb
Ch = KE + KG and

Kbend
Ch = KEE + KEG + KGG.

In the rest of this chapter we will examine and compare properties of the simple and first order data

dependent energy operators of chapters 3 and 4. We selected two primary models, a torus, which

consists only of regular patches, and a subdivided cone, having irregular patches of valence 3 and 7.

The question that seems to be of most interest, is how robust the operators are with respect to

parametrization changes. This is examined using global linear transformation and repeated subdi-

vision. At the end of this chapter the gradients and Hessians of the bending energy operators are

compared.

6.1 Linear Transformation of Meshes

In this section we want to analyze the behavior of the energy operators, if each of the control

points of a mesh is transformed linearly with the same map. The transformations considered are

the identity map I, a uniform scale U = diag(10, 10, 10) in each coordinate direction and finally the

more complex transformation

M =


1 0 0

0 5 1

0 0 0.5

 , (6.1)

which involves different scales for each of the coordinate directions plus a shearing term.
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Figures 6.1 and 6.2 display the relative errors of the simple and data dependent functionals, if

compared with their corresponding exact functionals. We make the following observations: The

data dependent membrane energy functional Ememb
SCh (S) models the exact functional Ememb

S (S) very

accurately for all three transformations. The simple bending energy Ebend
Ch (S) is not a good model

in any of the three cases. The simple membrane energy Ememb
Ch (S) and the data dependent energy

Ebend
SCh (S) seem to model the energies of the original and uniformly scaled meshes well, while doing

a relatively poor job on the meshes transformed by the map M.

The reason for the relatively good behavior of Ememb
Ch (S) with respect to the uniform scaling U is

rooted in the inherent scaling relations of both the quadratic form Ememb
Ch (r ·S) = r ·PT ·Kmemb ·r ·P

and the membrane energy Ememb
S (r·S) = r2 ·Ememb

S (S). A similar argument was already employed at

the beginning of chapter 4 to explain the poor performance of the simple bending energy functional.

The data dependent bending energy ESCh(S) shows significant errors on regular patches that

neighbor extraordinary patches. The reason for this will be analyzed in the next sections.

6.2 Subdivision Scaling of a single Patch

For the experiments in this section three patches of valence 3, 4, 7 and their corresponding one-rings

were extracted from the initial cone mesh. An “extraordinary” point was fixed in the valence 4 case

and the subdivision operator was applied between 1 and 10 times. On each subdivision level only

the patch next to the extraordinary point was considered in the computations for figure 6.3.

It was attempted to compute the integrals for the exact reference solutions Ememb
S (S) with 10

decimal digits and Ebend
S (S) with 6 decimal digits of accuracy. It is not clear if this was always

successfully achieved, especially in the bending energy case. It is notoriously difficult to compute

two-dimensional integrals of unbounded integrands without specialized quadrature rules.

We observe, that the relative errors of the data dependent membrane energy Ememb
SCh (S) get small

very quickly. The relative errors of the simple bending energy Ebend
Ch (S) stay big (and on a closer

examination we notice, that the errors grow with each subdivision). The relative errors of the simple

membrane energy Ememb
Ch (S) are reasonably small. For valence 7 they even seem to go to 0. The

relative errors of the data dependent bending energy Ebend
SCh (S) are also reasonably small for valences

3 and 7.

The behavior of Ebend
SCh (S) for valence 4 needs to be examined in greater detail. Let us recall,

that the operator Ebend is computed by evaluating the Hessian of scalar functions with respect to
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Figure 6.1: Local relative errors of the membrane energy functionals (top two rows simple functional,
bottom two rows first order data dependent functional). From left to right the maps I, U and M
have been used to transform the control points of the initial mesh. A saturated red color stands for
an energy approximation that is at least 4 times too high compared with the exact functional. A
saturated blue color symbolizes an energy approximation that is at least by a factor of 4 too low
compared with the exact functional. Sizes of images are scaled uniformly to fit the page.
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Figure 6.2: Local relative errors of the bending energy functionals (top two rows simple functional,
bottom two rows first order data dependent functional). From left to right the maps I, U and M
have been used to transform the control points of the initial mesh. A saturated red color stands for
an energy approximation that is at least 4 times too high compared with the exact functional. A
saturated blue color symbolizes an energy approximation that is at least by a factor of 4 too low
compared with the exact functional. Sizes of images are scaled uniformly to fit the page.
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their reference surface.

HessS(h) = I−1S ·
(
Hess(h) − (∂1hΓ

1 + ∂2hΓ
2)
)

(6.2)

If the reference surface is a regular patch, then the Christoffel symbols of this patch will in all

generality be not equal to zero. But for the computation of the first order functionals of regular

patches the reference surface SCh chosen is a linear map of the unit square (compare with figure 4.1).

This means the Christoffel symbols of SCh are zero for any parameter ū ∈ [0, 1]2. This “simplifies”

the Hessian of h with respect to SCh to

HessSCh(h) = I−1SCh ·Hess(h). (6.3)

Remember that the parameters of W where selected, such that IS ≈ ISCh. This means (at least for

valence 4) we can’t expect having Ebend
SCh (S)/Ebend

S (S)→ 1, if the subdivision level n goes to infinity.

For irregular patches of valence other than 4 and arbitrary configuration of the control points it

is not as simple to decide the behavior of Ebend
SCh (S)/Ebend

S (S). Nevertheless it seems to be clear

from the experiments, that all considered energy approximations of a single, repeatedly subdivided

extraordinary patch go to zero.

6.3 Subdivision Refinement of Meshes

Subdivision does not change the limit surface of a mesh. But subdivision clearly changes the size

and number of patches of the mesh and hence the underlying parametrization.

For regular regions and extraordinary patches the analysis of the previous section carries over

to the whole mesh. It does not apply to the neighborhood of the extraordinary patches, where new

regular patches are created during the subdivision process.

Let Sn be the refinement of the initial patch S on subdivision level n. Clearly Sn consists of

4n patches. Let Rn be the corresponding first order data dependent reference surface. Ignoring the

linear maps W the reference surface Rn at subdivision level n of the initial extraordinary patch is

Rn =

n−1⋃
i=0

2−i · L ∪
∞⋃
i=n

λi · LCh. (6.4)
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Figure 6.3: Simple energies and their corresponding relative errors (top two rows) and data dependent
energies with corresponding relative errors (bottom two rows) of repeatedly subdivided patches.
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subdivision level Ememb
S (S) Ememb

Ch (S) Ememb
SCh (S)

0 1.213e+01 1.339e+01 1.218e+01
1 1.213e+01 1.341e+01 1.215e+01
2 1.213e+01 1.342e+01 1.214e+01

subdivision level Ebend
S (S) Ebend

Ch (S) Ebend
SCh (S)

0 5.720e+01 1.347e+00 1.011e+02
1 5.720e+01 4.626e-01 1.475e+02
2 5.720e+01 1.556e-01 2.019e+02

Figure 6.4: Numerical values for the energy approximations of the whole meshes in figure 6.5

This means increasing the subdivision level n destroys the carefully introduced characteristic map

parametrization around the extraordinary vertex and replaces it for n→∞ with the parametrization

used in [HKD93]. For any n ∈ N the energy approximation Ebend
Rn

(S) is finite. Still for many initial

configurations of the control points Ebend
Rn

(S)→∞ for n→∞.

This property is clearly disappointing. It could be avoided, if we only had for regular patches

Ebend
SChn

(S)/Ebend
S (S)→ 1 with a sufficiently high convergence rate! This is not true for our functionals

Ebend
SCh (S), as we have already seen in the previous section. The good news is, that previously

developed methods for bicubic B-spline meshes (similar to [MS92] and [GLW96]) provide us with a

functional for which at least on bicubic B-spline meshes Ebend
Rn

(S)/Ebend
S (S)→ 1. It still needs to be

shown that the convergence rate can be chosen high enough such that hopefully Ebend
Rn

(S)→ Sbend
S (S)

for n→∞ for subdivision surfaces S.

Figures 6.4 and 6.5 illustrate the behavior of the data dependent energy functionals Ememb
SCh (S)

and Ebend
SCh (S) for different levels of subdivision. The data for Ebend

Ch (S) in the second table of figure

6.4 underscores its generally undesirable behavior.

6.4 Derivatives of the Energy Functionals

The simple and data dependent gradients of the bending energy of a subdivided cube are shown

in figure 6.6. We observe, that both gradients are very long compared with the dimensions of the

model. This is a commonly encountered situation. We also note, that the gradients differ in length

and direction.

Figure 6.7 clearly illustrates, that there is no interaction between the x, y and z components of

the control points in the computation of the simple bending energy. As a consequence the equation

system used in [HKD93] to fair the Catmull-Clark surface decoupled into three smaller systems. The
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Figure 6.5: Local relative errors of the first order data dependent membrane (top two rows) and first
order data dependent bending energy functionals (bottom rows) shown for three levels of subdivision.
The cone is shown twice from top and bottom for the bending energy on the third level of subdivision
(right hand side). A saturated red color stands for an energy approximation that is at least 4
times too high compared with the exact functional. A saturated blue color symbolizes an energy
approximation that is at least by a factor of 4 too low compared with the exact functional. Sizes of
images are scaled uniformly to fit the page.
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three blocks on the diagonal are equal, simplifying the process even further.

In contrast to that the Hessian of the first order data dependent energy has nonzero entries

outside of the block-diagonal matrices. All 9 blocks have the same sparsity structure, but in general

none of them are equal. The interaction between the x, y and z components of the control points

might be seen as a hint, that the data dependent functionals could be able to capture qualitatively

different effects than the simple functional.

The Hessians of the simple functionals are always positive (semi-)definite. It has been experi-

mentally verified, that this is not always the case for the Hessians of the first order data dependent

functionals.
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Figure 6.6: Gradients of the bending energy of the cube. The top image shows the gradient of the
simple, the center image the gradient of the first order data dependent and the bottom image the
gradient of the exact bending energy functional. The colors of the cube show the mean curvature.
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Figure 6.7: The Hessians of the bending energy of the cube. The simple functional (top) has a
block-diagonal structure. The data dependent functional (bottom) not. Both Hessians are sparse
because of the local support of the basis functions of the Catmull-Clark subdivision scheme. Red
color denotes positive entries, negative entries are colored blue.
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Chapter 7

Conclusion

In chapter 3 we computed the simple energy functionals for extraordinary patches avoiding divergent

integrals using the characteristic map parametrization. Based on this result we introduced in chapter

4 new data dependent functionals. It was shown how to evaluate these functionals quickly by

precomputing 3 respectively 6 matrices and scaling them when needed with simple factors. In

chapter 5 we showed, that it is possible to compute with high accuracy the gradient and Hessian of

the new energies. These computations are efficient with respect to memory overhead and evaluation

time.

In chapter 6 the simple and the data dependent functionals where compared to their correspond-

ing exact parametrization independent solutions. It was shown that the first order data dependent

membrane energy behaves nearly as well as the parametrization independent energy. It was ar-

gued, that the simple bending energy is not a good model in many cases. The simple membrane

and the first order data dependent bending energy where shown to be acceptable models for their

corresponding exact energies in simple situations only.

It is desirable to analyse the behavior of the first order data dependent energies further. The

experimental analysis is currently slowed down by the computation of the exact functionals. This

could be changed by implementing specialized integration rules. In case the first order data depen-

dent functionals prove themselves in applications, it would be necessary to obtain formal proofs of

some of the experimentally shown approximation and convergence properties.

An important question that remains to be examined, is if and how one should try to fix the

blow-up of the first order data dependent bending energy error next to extraordinary patches. The

author hopes it could be done with methods previously developed for bicubic B-splines.

To evaluate the performance of the new operators in a real world application the author plans

to implement a non-linear high dimensional optimizer for the fairing of subdivision surfaces.
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Appendix A

Used Symbols

Symbol Domain

S R
2 → R

3 surface or patch

R R
2 → R

3 reference surface or patch

ER(S) energy of patch S with respect to reference surface R

P, X̄ R
3M control points

K R
M·M quadratic form

φi R
2 → R eigen basis function of patch

λi R eigen value belonging to φi, λi ≥ λj if i > j

IS R
2 →Mat(2, 2) first fundamental form of S at

IIS R
2 →Mat(2, 2) second fundamental form of S at

Γkij R
2 → R Christoffel symbols

gradR(h) gradient of h with respect to reference surface R

HessR(h) Hessian of h with respect to reference surface R
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