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Abstract. Parameterization of unstructured surface meshes is of fundamental importance in
many applications of Digital Geometry Processing. Such parameterization approaches give rise to
large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use
of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to
begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy.
In this paper we consider several strategies for the construction of hierarchies using ideas from mesh
simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy
construction schemes and demonstrate their superior performance when used in conjunction with a
multigrid preconditioner.
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1. Introduction. Unstructured triangle meshes which approximate surfaces of
arbitrary topology (genus, number of boundaries, number of connected components)
appear in many application areas. Examples range from iso-surfaces extracted [49]
from volumetric imaging sources and scientific simulations [53] to surfaces produced
through range scanning techniques (e.g., [10, 46]) in areas as varied as historical
preservation, reverse engineering, and entertainment. These meshes can be quite
detailed: 100, 000 samples, i.e., point positions on the surfaces, are quite common
with many datasets ranging into the millions and some even into billions [46] of
samples. Processing such meshes efficiently, in particular when numerical simulation
algorithms are involved, requires sophisticated solvers.

One of the most fundamental issues in the processing of such geometry is the
establishment of a parameterization, i.e., the construction of functions from sections
of the surface to regions in R2. For example, parameterizations are critical for the
approximation of one surface by another (e.g., [44, 43, 70]), numerical simulation of
the mechanics of such surfaces (e.g., [26, 5]), their resampling (e.g., [18, 45, 31]),
editing [42], or just plain decoration (“texture mapping”) [60].

Most parameterization algorithms define a good parameterization as one which
minimizes some energy functional [18, 37, 62, 29, 27, 64, 25, 55, 39]. The energy serves
to encode measures such as low distortion [59, 60], conformality [33, 13, 47, 28],
area preservation [13], or elastic energy [50]. Others define the solution to satisfy
barycentric coordinate conditions [19, 21] which take the original triangle shapes into
account.

A basic building block of all of these parameterization algorithms is the solution of
sparse linear systems which are defined relative to the input mesh, i.e., they contain as
many degrees of freedom (DOFs) as vertices. Such systems tend to be ill-conditioned
for large meshes and standard iterative solver methods typically take very long to
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converge or even fail to converge. This comes as no surprise since the leading order
terms of most of these parameterization algorithms correspond to discretizations of
2nd order elliptic PDEs. For such operators appropriate preconditioning methods
have long been studied and optimal methods are well known [32].

These preconditioners are generally based on hierarchical representations, which
are easy to come by in the standard structured refinement setting (e.g., quadrasection
or longest edge bisection refinement [56, 57]). However, in the cases of interest to us we
are confronted with a setting in which we are handed a very fine, unstructured mesh
and any kind of hierarchical solver machinery must address the issue of coarsening,
not refinement.

1.1. Contributions. In this paper we construct effective multilevel precondi-
tioners in the unstructured, 2-manifold (with boundary) triangle mesh setting. As
example problems we consider the linear systems arising in mesh parameterization
algorithms, both symmetric and non-symmetric. Our hierarchy construction is based
on mesh simplification methods using vertex removal [16] as their primitive opera-
tions. These simplification methods guarantee a logarithmic number of levels, i.e.,
geometric decay of DOFs from finest to coarsest. To avoid the problems of retri-
angulation of polygonal holes in R3 we implement vertex removal through half-edge
contractions [35, 15]. We propose three hierarchy constructions, which exhibit differ-
ent decay rates in the number of DOFs. Two of these constructions are entirely novel
and perform exceedingly well on problems of interest. The different hierarchies are
compared vis-a-vis different multilevel preconditioning strategies. Our novel, fast de-
caying, unstructured MIS hierarchy, coupled with the multigrid (MG) preconditioner,
exhibits the by far best overall runtime over a range of problem sizes.

1.2. Outline. In Section 2 we present the mathematical framework for surface
parameterization and elaborate how the linear systems arises from the parameteriza-
tion process. The parameterization weights of interest are harmonic and mean value
weights, and we provide some background on them. The mesh coarsening process is
described in Section 3, together with the methods we use to construct fast, medium
and slow decaying hierarchies using the notion of maximal independent sets in a va-
riety of ways. The construction of prolongation matrices is elaborated in Section 4.
The different preconditioners we consider are described in Section 5, together with
their relations to each other. To understand the observed performance better we an-
alyze the sparsity fill-in for the different hierarchies in Section 6. Finally, Section 7
documents our numerical experiments and the superiority of the MG preconditioner
coupled with our novel fast decaying MIS hierarchy. Conclusions in Section 8 close
the paper.

2. Parameterization. We begin by fixing our notation in describing the basic
parameterization setup. A 2-manifold triangle mesh of arbitrary genus, possibly with
boundary, is given as a simplicial complex M = (V,E, T ). This mesh is (typically)
embedded in R3, i.e., each vertex vi ∈ V has associated with it a point position
pi ∈ R3. The point positions are extended in a piecewise linear fashion using the
incidence relations given by the set of edges, eij ∈ E and triangles tijk ∈ T . For
surfaces of arbitrary topology, not equivalent to a disk, parameterizations are typically
computed by combining a sequence of individual parameterization problems for disk
like subsections of the surface [18, 29, 39]. To simplify the exposition in this paper
we will consider M to be a (sub-)mesh topologically equivalent to a disk.

A parameterization of M is a piecewise linear injective map from the embedded
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surface to a region Ω ⊂ R2

ψ : R3 ⊃M → Ω ⊂ R2.

Ω may be thought of as a flattened version of the same mesh (see Figure 2.1), i.e., it
shares the same combinatorial structure (V,E, T ). Consequently ψ is fully specified
by the values it takes on the vertices vi ∈ V , ψ(vi) ∈ Ω. Note that the injectivity of
ψ implies that no triangle is “flipped” under the parameterization.

Fig. 2.1: Igea face (Model 2) and its parameterization with harmonic weights.

Let VI and VB denote the interior and boundary vertices of V and 1-Ri the 1-ring,
i.e., the set of edge neighbors, of vi, 1-Ri = {vj |eij ∈ E}. The commonly described
approaches to solving for a ψ with desired properties all reduce to solving a sparse
linear system1. These are defined by specifying for each vertex vi ∈ VI a set of weights
λij , one for each vertex vj ∈ 1-Ri. The parameter points ψ(vi) ∈ Ω are then found
by solving the linear system

ψ(vi)
∑

vj∈1-Ri

λij −
∑

vj∈1-Ri∩VI

λijψ(vj) =
∑

vj∈1-Ri∩VB

λijψ(vj), vi ∈ VI . (2.1)

This can be written as the matrix equation

Ax = b, (2.2)

where x = {ψ(vi)}vi∈VI is the vector of DOFs in some arbitrary order, and b the right
hand side of equation (2.1). The matrix A = {aij}vi,vj∈VI has dimension N ×N with
N = |VI | and entries

aij =


∑
vk∈1-Ri

λik, i = j,
−λij , vj ∈ 1-Ri,

0, otherwise.
1In those cases in which ψ is given as the solution of some non-linear functional we generally get

a sequence of linear systems of the same basic structure.
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Note that λij may or may not be equal to λji leading respectively to symmetric or non-
symmetric A. If all λij are non-negative, ψ(vi) lies in the convex hull of its neighbors
ψ(vj) (vj ∈ 1-Ri), which, taken together with a convex boundary mapping for all VB ,
ensures the injectivity of the solution [67] (see also Floater [20] for a more recent,
simpler proof). For example, the simple set of weights λij = 1 has this property.
Unfortunately these weights take none of the geometry (angles, lengths, sampling,
etc.) of the original embedding into account. If the map is to have properties such as
angle or area preservation the weights must depend on the geometry of the embedded
mesh.

For purposes of this article we consider two different types of weights: har-
monic [54] and mean value [21]. Harmonic weights are defined by

λij = λji = cot ak + cot al,

where ak and al are the angles opposite eij in the two incident triangles tkji and
tijl (see Figure 2.2). Note that boundary edges (vi, vj ∈ VB), which have only one
incident triangle, do not appear, ensuring that the λij are well defined. Boundary
conditions can be of the Dirichlet type—with prescribed mappings of the VB—or of
a Neumann (“natural”) type [13].

i

j

bi

ak
al

k
l

ci

Fig. 2.2: Angles used in the definition of the parameterization weights.

The harmonic weights arise from the standard piecewise linear finite element ap-
proximation to the Laplace-Beltrami operator and are based on the fact that harmonic
functions minimize the Dirichlet energy [54] with f : Ω→M :

E(f) =
∫

Ω

‖∇f‖2g,

where g indicates the metric used on the surface M and ‖∇f‖2g = trace g(∂f., ∂f.).
The Laplace-Beltrami equation is a self-adjoint nonlinear 2nd order elliptic PDE and
is the generalization of the usual Laplace operator to a smooth surface with the given
metric. The system arising from the harmonic weights is symmetric and positive
definite [54]. However, a given triangulation may lead to negative coefficients λij in
the presence of obtuse angles. In that case the matrix may become positive semi-
definite. The weights depend smoothly on the points pi ∈ R3, i.e., the embedding.

Mean value weights are derived from an application of the mean value theorem
for harmonic functions and defined as:

λij =
tan(bi/2) + tan(ci/2)

‖pi − pj‖
.
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Angles used in the construction of the mean value weights do not allow a symmetric
system. However, the weights are guaranteed to be positive. Taken together with a
convex embedding of the boundary of M into ∂Ω this property guarantees an injective
ψ. Assuming that all edge lengths are bounded away from zero, so are the λij , which
may help in the conditioning of the linear system of equation (2.2). As in the harmonic
weights case, the weights depend smoothly on the points pi ∈ R3.

3. Mesh Coarsening. Given that our linear systems are too large to begin with,
hierarchy construction implies coarsening strategies. We borrow algorithms from the
well developed area of mesh simplification for this purpose and give a brief background
in this section.

The development of mesh simplification methods was initiated to deal with in-
creasingly fine sampled surface meshes. Hoppe [35] introduced progressive meshes,
which are built through a greedy strategy of topology preserving edge contractions [15]
(see Figure 3.1), prioritized according to the geometric error introduced between the
coarser mesh and the original mesh [22]. Criteria which also take triangle shape and
curvatures into account were examined by Kobbelt and co-workers [41]. Such mod-
ifications may be particularly useful to ensure good mesh conditioning for the finite
element method [4, 63].

Fig. 3.1: Edge contraction removes one vertex, three edges, and two faces by making
the end points of one edge coincident.

Each edge contraction removes one vertex, three edges, and two triangles. Such
a sequence of edge contractions can be “played” back and forward allowing for a
traversal of a linear number of mesh approximations. A partial order of topological
dependencies between the contractions—a given contraction cannot be undone before
some neighboring contractions have been undone—can be used to induce a discrete set
of “levels” of meshes between finest and coarsest [71, 36]. While the number of levels is
“reasonable” in practice, no guarantees are made as to the asymptotic number of such
levels. This is not surprising since the choice of simplification order and criteria in
these algorithms depend on the geometry (embedding). Other simplification strategies
such as vertex removal [61] as well as triangle removal [24].

Guarantees as to the number of levels of a fine to coarse hierarchy—and the
cost of its construction—can be made by vertex removal strategies based solely on
combinatorial considerations. Such methods have been employed in computational
geometry for the construction of asymptotically optimal planar point location [40]
and spatial geometric queries [16]. The so-called Dobkin-Kirkpatrick (DK) hierarchy
is constructed by removing a maximal, independent set of vertices from a given triangle
mesh (see Figure 3.2, left). A subset of vertices, Vo ⊂ V , is said to be independent
if for any vi, vj ∈ Vo, eij /∈ E. It is maximal if addition of any vertex vk ∈ V \ Vo
to the set Vo would violate its independence property. Each removed vertex leaves
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a polygonal hole which is subsequently retriangulated. This process removes one
vertex, three edges, and two triangles per independent vertex. Repeatedly removing
a maximal independent set one arrives at a full hierarchy.

There are many different ways to implement the DK hierarchy. Selection of the
maximal independent set of vertices is typically performed through some sweep and
mark algorithm. The classical approach is purely combinatorial, i.e., it does not
take any property of the embedding into account. This can lead to deteriorating
aspect ratios as pointed out by Miller et al. [51]. To enable control over the quality
of the coarser triangulation we prioritize half-edge contractions based on edge length
(effectively removing the shortest edges first) to favor uniform triangle sizes at a given
level of the hierarchy.

For a given edge we check the incident vertices for their status: unmarked, in-
dependent, or dependent. Initially all vertices are unmarked. If one incident vertex
of an edge is independent, the other is marked dependent if still unmarked. Else we
mark an unmarked vertex as independent and the other endpoint as dependent. If
both endpoints are unmarked we favor the vertex of higher valence as independent.
This biasing towards higher valence tends to result in smaller maximally independent
sets of vertices. While this leads to slower decaying DK hierarchies it also leads to
faster decay in our MIS hierarchy (see below). After the marking sweep, indepen-
dent vertices are removed through a half-edge contraction into one of their dependent
neighbors (there is always at least one such neighbor). For the construction of prolon-
gation operators we also record all dependent vertices in the 1-ring of an independent
vertex.

Using the Euler characteristic of a planar mesh one can show that |Vo| ≥ c|V |
for some 1 > c ≥ c0 > 0 for any planar mesh with |V | > n0 > 0 and c0 independent
of the particular mesh. Four colorability of a planar graph ensures that c0 = 1/4 is
possible. Randomized greedy selection strategies can achieve this bound in empirical
practice though the theoretical guarantees only assert c0 ≥ 1/24 for such strategies.
These strategies favor low valence vertices for removal. With our strategy of favoring
high valence vertices we observe an empirical c0 ≈ .21. Whatever the exact factor,
it implies that a sequence of coarser meshes can be constructed with J = O(log |V |)
levels.

Fig. 3.2: Marked vertices in the left mesh denote a maximal independent set. On the
right a retriangulation of the independent set, which is used in our fast MIS hierarchy
construction.

The decay rate—going from fine to coarse—of the thusly constructed hierarchies
is much slower than the rates achieved in quadrasection refinement: 3/4 compared to
.21. In analogy to the regular refinement setting of coarse to fine mesh hierarchies one
would like to use coarsening strategies that remove a larger fraction of all vertices.

Consider quadrasection refinement of a triangle mesh. In that case each old
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vertex is surrounded by a set of new vertices in the finer mesh: the old vertices form a
maximal independent set with respect to the finer mesh. This observation suggests the
construction of a hierarchy which turns the DK removal strategy on its head. Instead
of removing the maximal independent set we form the coarser level by removing all
other vertices. We will refer to this novel hierarchy construction as the MIS hierarchy.

Exchanging dependent and independent markings the coarser level is once again
built by performing half-edge contractions after a sweep and mark pass. Note that
the prolongation list will always contain at least one vertex, but may not contain
more than that. In practice we found that approximately 1/3 of all removed vertices
fall into this category. For such vertices the prolongation matrices have rows with a
single non-zero entry. To evaluate the impact of these degenerate rows on the solver
convergence we consider a medium hierarchy in between the slow DK and fast MIS
hierarchies. The medium hierarchy is constructed in exactly the same way as MIS but
we prohibit the removal of vertices which have only a single entry on their prolongation
list. Naturally, such a hierarchy decays slower then MIS but still faster then DK. We
observed a decay rate of .51, compared to .21 and .80 for the MIS and DK hierarchies
respectively. Figure 3.3 shows the decay rate for two models (other models exhibit
the same rates).
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Fig. 3.3: The rate of decay in the number of DOFs for Model 2 (left) and Model 3
(right). Average decay rates of .21, .51, .80 are observed for fast (MIS), medium
(modified MIS), and slow (DK) hierarchies respectively.

Boundary vertices are further qualified in the removal strategy. A half-edge con-
traction is not performed if it would contract a boundary vertex into an interior vertex.
This ensures a better representation of the boundary during coarsification. In some
settings it may also be desirable to fix some boundary vertices, typically corners, as
unremovable throughout the hierarchy. Other cases in which an edge contraction is
not performed are those which would change the global topology of the mesh (see [15]).
In some applications it may also be desirable to incorporate geometric measurements
into the removal criteria. Examples include quality measures such as triangle aspect
ratio or whether the coarser surface has self intersections. Such modifications can of
course change the observed decay rates.
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Alternative approaches such as geometrical coarsening of unstructured planar
meshes [4, 8, 52] or algebraic coarsening techniques [38, 68] have been studied in
the numerical PDE community. These techniques usually employ agglomeration and
aggregation strategies. The approach taken by Bank and Xu [4] is fundamentally
different from our approach and it is unique in the sense that they force an arbitrary
unstructured mesh into a nonuniform and locally refined mesh, enabling them to
impose a logically nested (but not physically nested) structure on the mesh. Except for
the algebraic coarsening techniques these algorithms are generally more complicated
than our approach and it is unclear whether they can be generalized to the non-planar
setting. Purely algebraic techniques offer an alternative, albeit at the cost of giving
up knowledge of the embedding in choosing the best coarsification steps.

4. Prolongation Operators. We now have three different hierarchies at our
disposal, slow (DK), medium (modified MIS), and fast (MIS) and will examine their
behavior vis-a-vis different multilevel preconditioning strategies. As in the standard
multigrid framework, coarser representations of the finest level system matrix are
formed algebraically by the triple matrix product (also known as the variational con-
dition)

A(j) = (P j−1
j )TA(j−1)P j−1

j , j = 1, . . . , J, (4.1)

where j corresponds to a coarser level than j−1 and P j−1
j is the prolongation operator

from level j to j − 1. P j−1
j is of size Nj−1 × Nj where Nj denotes the number

of DOFs at level j. There are many possible predictor choices which can be used
for the prolongation operator: centroid, inverse edge length, Guskov [30] (divided
differences), Desbrun [14], or energy minimizing [69] predictors. Gieng reports [23]
that the performance of the multilevel preconditioners is not dramatically affected
by the predictor choice. Hence we use the simplest one: centroid prediction (see
Figure 4.1) (for fourth order problems however the predictors of Guskov and Desbrun
may be more appropriate).

vi

1=|1-Ri|

1=|1-Ri|

1=|1-Ri| 1=|1-Ri|

1=|1-Ri|

Fig. 4.1: For this example, the prolongation matrix row corresponding to vi has entries
1/|1-Ri| = 1/5.

The rows corresponding to the coarse DOFs will form an identity matrix I of size
Nj−1×Nj−1 and a row in Rj−1

j corresponding to a newly introduced DOF—or vertex
vi—will contain entries equal to 1/|1-Ri| (where |1-Ri| is the number of DOFs in the
prolongation list of vi) in the appropriate columns. All other entries vanish.

P j−1
j =

[
I

Rj−1
j

]
. (4.2)



MULTILEVEL SOLVERS FOR UNSTRUCTURED SURFACE MESHES 9

5. Preconditioners. Most of the parameterization work published in the com-
puter graphics literature has focused on different approaches to the formulation of the
system matrix. Little effort has been devoted to effective numerical solvers, though
the need to go beyond simple diagonal preconditioning has been pointed out repeat-
edly (see for example [47]). For example, the work of Liesen et al. [48] concentrates on
a constrained minimization approach with single level preconditioning in the form of
a Krylov subspace method (for more details see [11]). In contrast our preconditioners
exploit a full multilevel hierarchy. Duchamp and co-workers [17] did use a full hier-
archical approach to compute piecewise linear harmonic embeddings. They construct
lazy wavelets [66, 65] induced by a DK hierarchy and consider a conjugate gradient
solver in the wavelet domain. Empirically, this reduced the number of iterations from
linear to logarithmic, similar to what is found when using a hierarchical basis [73] for
the solution of 2nd order elliptic problems. In our construction we observe a constant
number of iterations for the MG preconditioner as expected.

The systems arising in parameterization problems are well known to be ill-con-
ditioned, with (bi-)conjugate gradient methods often failing for systems beyond ≈
50, 000 DOFs. Some simple hierarchical preconditioning (näıve BPX, see below) has
been used since it is easy to integrate with mesh simplification approaches without
the need to build coarser level system matrices (see, e.g., [42]). In our comparison of
methods we will include this strategy.

Multilevel preconditioners are usually classified as either multiplicative or additive
Schwarz methods. Multiplicative preconditioners are designed to update the residual
at every level throughout the multilevel hierarchy, whereas the additive ones update
the residual after a full sweep of the multilevel hierarchy. We are going to employ
two multiplicative Schwarz methods: the multigrid (MG) and the hierarchical basis
multigrid (HBMG) [3] preconditioners. Essentially MG and HBMG are the same
preconditioner with the difference lying in the DOFs used for the smoothing iteration
(see Algorithm 6.1). MG sweeps all DOFs at a given level, whereas HBMG sweeps
the ones that are newly introduced at that level. Hence, HBMG is very attractive
for adaptive regimes where the storage complexity is optimal and the computational
complexity is close to optimal (in two spatial dimensions). Based on the decay rate of
the hierarchies, different multilevel preconditioners are appropriate. Traditional MG
is most appropriate for fast decaying hierarchies while the HBMG method is more
appropriate for slow decaying hierarchies. (In the traditional refinement setting they
are used for highly adaptive refinement with only a small constant number of DOFs
added when going from coarse to fine.) In either case the system is solved with the
help of the (bi-)conjugate gradient method as an outer accelerator. The iteration
counts we report give the number of iterations of the (bi-)conjugate gradient method.
The computational complexities of several multilevel preconditioners were discussed
in detail in [1]. Both MG and HBMG act as standard V-cycle iteration with one
symmetric Gauss-Seidel iteration as smoother.

Additive versions of MG and HBMG preconditioners are the Bramble-Pasciak-
Xu (BPX) [6] and the hierarchical basis (HB) [73] preconditioners respectively. The
action of the classical BPX preconditioner [1, 72] in 2D can be written in matrix form
as:

XBPX =
J−1∑
j=0

PjSjP
T
j + PJ(AJ)−1PTJ , (5.1)

where (AJ)−1 represents a coarsest level direct solve. The prolongation matrix from
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level J to j is denoted by

Pj ≡ P 0
j = P 0

1 . . . P
j−1
j ∈ RN0×Nj .

P 0
0 is the identity matrix I ∈ RN0×N0 , P j−1

j is the prolongation matrix from level j
to j − 1, and Sj is the smoother. The HB preconditioner in 2D can be expressed as:

XHB =
J−1∑
j=0

HjSjH
T
j +HJ(AJ)−1HT

J , (5.2)

where the Hj are the tails of the Pj corresponding to newly introduced DOFs. In
other words, with J + 1 = 0, Hj ∈ RN0×(Nj−Nj+1), j = 0, . . . , J is given by only
keeping the columns that correspond to new DOFs (the last Nj − Nj+1 columns of
Pj). Notice that the smoother Sj in equation (5.2) acts only on the newly introduced
DOFs.

The additive method which we denote as the näıve nBPX preconditioner is a vari-
ant of BPX. It takes only the finest level term in equation (5.1), drops the smoother,
and the coarsest level direct solve:

Xnäıve = PJP
T
J . (5.3)

As mentioned in Section 2, the harmonic and mean value weights give rise to sym-
metric positive definite and non-symmetric systems, hence the preconditioners above
are coupled with conjugate gradient and bi-conjugate gradient methods respectively.
The solvers for the system formed by using the harmonic weights are provably guaran-
teed to converge. We have full rank prolongation matrices and convergent smoothing
iterations, then through the use of the variational conditions applied to the symmetric
positive definite system the convergence of the solver is guaranteed [58].

All the above preconditioners are mesh oriented in the sense that the prolongation
operators are created using the geometry and connectivity information of the mesh.
An alternative would be the use of algebraic multigrid (AMG) methods [7] which do
not use any geometric knowledge about the mesh, though the connectivity of the mesh
enters at the finest level through the associated sparsity structure of the system matrix
(2.2). AMG methods may be attractive for parameterization problems. However,
the original AMG theory was developed for Stieltjes matrices (i.e., A ∈ RN0×N0 is
symmetric positive definite, and has non-positive off-diagonal entries). While Stieltjes
matrices are not a requirement for AMG to work, matrices A which are far from being
Stieltjes may render AMG less effective [7]. We do not pursue AMG methods further
here, in particular since they do not provide explicit control over the construction
and quality of the coarsification hierarchy. (For some recent work employing AMG
for mesh partitioning and multilevel surface editing see the work of Clarenz et al. [9].)

6. Sparsity. When comparing different preconditioning strategies one can eval-
uate their performance in terms of the number of iterations required by the solver.
However, this does not tell the whole story since the time to solution is a function
of both the number of iterations and the sparsity structure of the matrices appearing
in the multilevel hierarchy. In this section we take a closer look at the fill-in of the
matrices involved in the actions of MG and HBMG preconditioners. (Note that the
question of sparsity does not arise for the nBPX since it does not use any matrix
structures.) The sparsity will help to explain the overall superior performance of the
MG preconditioner in conjunction with the fast (MIS) hierarchy.
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To evaluate the sparsity we consider the average number of non-zero entries per
row. We observe relatively small and uniform standard deviation of this measure
making it a good predictor of performance. We plot the number of non-zero entries
in the matrices formed by the variational conditions (equation 4.1) for fast, medium,
and slow hierarchies in Figure 6.1. For fast and medium hierarchies, fill-in increases
approximately linearly with level (two models are shown, others exhibit the same
behavior). The slow hierarchy fill-in is also linear with respect to level over a wide
range. But it is very rapid and the curves flatten out as the matrices become dense.
At the finest level, the matrices have seven non-zeros on average as a consequence of
the Euler characteristic. At the coarsest level, the fast, medium and slow hierarchies
produce an average of 12, 30 and 190 non-zero entries. This easily indicates that
sparsity is the primary factor which is responsible for the poor performance of slow
hierarchies. Also note how the medium hierarchy leads to significantly more (almost
three times more) fill-in compared to the fast hierarchy.
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Fig. 6.1: Sparsity of the system matrix for Models 2 and 3 using fast, medium, and
slow hierarchies (left). Close up of the sparsity between levels 0 and 6 (right). Notice
the rapid fill-in corresponding to the slow hierarchy.

For slow decaying hierarchies it is more appropriate to use the HBMG precondi-
tioner which only operates on some of the DOFs at each level. Let A(j) be represented
by a two-by-two block form [2]:

A(j−1) =

[
A(j) A

(j−1)
12

A
(j−1)
21 A

(j−1)
22

]
(6.1)

where A(j), A(j−1)
12 , A(j−1)

21 , and A
(j−1)
22 correspond to coarse-coarse, coarse-fine, fine-

coarse, and fine-fine interactions respectively. The HBMG method utilizes a change
of basis operation resulting in the so-called stabilized blocks (represented with hats).
Dropping the superscripts for simplicity, the blocks are expressed as:

[
Â11 Â12

Â21 Â22

]
=

[
I RT

0 I

] [
A11 A12

A21 A22

] [
I 0
R I

]
,
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Fig. 6.2: A12 sparsity (left) and A22 sparsity (right) for slow hierarchy for Model 2
and 3.

Â11 = A11 + A12R + RTA21 + RTA22R

Â12 = A12 + RTA22

Â21 = A21 + A22R

Â22 = A22.

In terms of these stabilized blocks the HBMG algorithm can be interpreted as an
iterative process for solving the system (2.2) where x = Px̂, b̂ = PT b.

Algorithm 6.1.

1. smooth Â22x̂2 = b̂2
2. form residual r̂1 = b̂1 − (Â11x̂1)− Â12x̂2

3. solve Â11x̂1 = r̂1

4. prolongate x̂ = x̂+ Px̂1

5. smooth Â22x̂2 = b̂2 − (Â21x̂1)
This can be further simplified by transforming the linear system (2.2) into the

equivalent system

A(x− xj) = b−Axj ,

with an initial guess of xj . In this setting, the initial guess is zero, and the HBMG
algorithm recursively iterates towards the error with given residual on the right hand
side. In that case the terms in parentheses in Algorithm 6.1 are zero.

In the HBMG method—a multiplicative preconditioner—the residual is computed
at every level (see step 2 in Algorithm 6.1), therefore the sparsity of the A12 block
plays a crucial role. Similarly, the cost of the smoothing step is related to the sparsity
of A22. Figure 6.2 shows the sparsity of the A12 and A22 blocks. As before the fill-in
increases linearly with level over a wide range. Eventually the matrices become quite
dense so that the curves flatten out, similar to what we observed for A in the slow
hierarchies. At the finest level, A12 contains six non-zero entries and A22 has only
one non-zero. As the hierarchy reaches the coarsest level, HB stabilization produces
173 and 38 non-zeros in the A12 and A22 blocks respectively. The ratio of non-zero
entries in A12 over A22 is roughly 4.5 with an almost identical slope. This ratio is
due to the A12 block having many initial non-zero entries before HB stabilization is
in effect.
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7. Numerical Experiments. The preconditioners employed in this paper have
been implemented as library extensions to the freely available Finite Element ToolKit
(FEtk) [34] (more information about FEtk can be found at: http://www.fetk.org/).
The code was compiled using gcc-2.96 with O2 optimization and all timings were
taken on a 2.8GHz P4 Xeon with 4GB of RAM running Linux.

We present experiments with six different unstructured surface meshes (see the
images in Figure 7.1) of varying size (see Table 7.1). Note the rapidly deteriorating
condition numbers as the number of DOFs increases.

Fig. 7.1: Models used: Igea face (Model 5), skull (Model 6), David face (Model 2) and
David head (Models 1, 3, and 4 with descending order in the number of DOFs).

Model DOFs Fast Med. Slow Min eig. Max eig. Cond. no.
1-David head 579649 4 8 17 1.22e−5 3.19e+4 2.60e+9
2-David face 223654 4 7 21 1.29e−4 2.26e+3 1.74e+7
3-David head 94220 4 7 22 7.61e−5 2.82e+2 3.71e+6
4-David head 46094 4 5 18 1.44e−4 2.03e+2 1.40e+6
5-Igea face 8038 3 4 16 4.23e−3 2.34e+2 5.53e+4
6-Skull 1203 4 3 2 2.70e−2 3.54e+1 1.31e+3

Table 7.1: Collection of models used in our experiments showing the number of levels
used for fast, medium, and slow hierarchies, the maximum and minimum eigenvalue
and the resulting condition number (for harmonic weights).

The goal of the numerical experiments is to determine the minimum solve time as
a function of hierarchy and preconditioner used. Another factor concerns the sparse-
cutoff, i.e., the level of the hierarchy at which a direct solve (such as SuperLU [12])
is performed. This is typically not the coarsest level the hierarchy creation could
produce. Among all possible levels, we numerically choose the coarsest level with
respect to the best solve time. The number of levels reported in Table 7.1 is obtained
by the sparse-cutoff (in fast hierarchy we typically find a cutoff after four levels). In our
experiments the solver iteration was stopped when the norm of the residual fell below
5.0e-5. Vector entries are expressed by double datatypes, whereas matrix entries
are of float type. Interestingly, going from double to float precision only reduced
runtimes by 5% for the largest model, indicating that the runtime is dominated by
memory latency, not bandwidth issues.

http://www.fetk.org/
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Figure 7.2 shows all nine combinations of fast, medium, and slow hierarchies with
MG, HBMG, and nBPX preconditioners acting on both symmetric (harmonic weights)
and non-symmetric (mean-value weights) systems. For each preconditioner the thick
line indicates the winning hierarchy. For example, MG with the fast hierarchy out-
performs MG with medium or slow hierarchies. HBMG timings are comparable for
fast and medium hierarchies, but asymptotically medium hierarchy timings are fa-
vorable (see also the Model 1 timings in Table 7.2). HBMG is designed for adaptive
meshes and slow hierarchies are the closest to that pattern. Among the precondi-
tioners used with the slow hierarchy, HBMG turns out to be the most effective as
expected. nBPX favors the fast hierarchy, making the fast hierarchy the best for all
preconditioners. The least effective preconditioner turns out to be nBPX especially
with the slow hierarchy. Although, nBPX is effective on small systems, it rapidly
loses its performance on large systems even though each iteration is very cheap. The
main advantage of nBPX—and reason for its use–is its implementation simplicity.
All matrix/vector operations can be implemented directly on the mesh datastructure
with no need to construct matrices explicitly or compute triple matrix products. With
the fast hierarchy, MG becomes such an effective preconditioner that it outperforms
all other preconditioners on all the models. This holds true for both symmetric and
nonsymmetric systems.

The geometric decay rate in the number of DOFs produces O(N) solve times for
MG and O(N logN) for HBMG and nBPX albeit with very different constants. This
can be seen in the number of iterations which remain constant for MG whereas a log-
arithmically growing count can be observed for HBMG and nBPX (see Figure 7.3).
This is very much the same behavior as observed for elliptic PDEs, which comes as no
surprise when the parameterization is obtained by discretizing the Laplace-Beltrami
operator. We remark that the iteration counts of nBPX are an order magnitude larger
than those for HBMG. This difference is the primary reason why sophisticated pre-
conditioners become superior to the näıve ones even though they require significantly
more work per iteration. In order to exhibit the striking performance difference be-
tween the preconditioners and the hierarchies used, we insert the results for the largest
system in Table 7.2. Notice that iteration counts for the nonsymmetric system are
two to three times less than the symmetric one. This is particularly noticeable for the
HBMG experiments. The slow hierarchies consistently give rise to the least number of
iterations for MG and HBMG preconditioners. However, the depth of the slow hier-
archies create large fill-in as discussed in Section 6. This fill-in makes slow hierarchies
the most expensive to use when considering the overall timings.

8. Conclusion. Using different coarsening hierarchies, we presented a system-
atic performance analysis for MG, HBMG, and nBPX preconditioners on systems aris-
ing from the parameterization of unstructured surface meshes. The parameterization
schemes of interest use harmonic weights and mean value weights giving symmetric
and nonsymmetric systems respectively. Iteration counts indicate that for the same
preconditioner a better conditioning of the system is obtained by using more levels,
i.e., a slow (DK) hierarchy. But since the cost of one iteration on the slow hierarchy
is relatively expensive, fast hierarchies result in the best runtimes.

Our experiments consistently show that the fast hierarchy is favorable over medium
and slow hierarchies for all preconditioners, with the best results achieved when using
the MG preconditioner. If the slow hierarchy is chosen, the best solve time is achieved
by the HBMG preconditioner. We should emphasize that we observed convergence in
all the experiments and no restarts for the bi-conjugate gradient method. The prov-
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Fig. 7.2: CPU time for symmetric (top) and nonsymmetric (bottom) systems.
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Fig. 7.3: Iteration counts for symmetric (left) and nonsymmetric (right) systems.

Hier+pcond Sym time Nsym time Sym iter Nsym iter
fast+MG 37.3 55.9 19 14
med+MG 65.0 70.7 21 11
med+HBMG 184.0 133.8 100 37
fast+HBMG 230.1 149.2 141 44
slow+HBMG 326.8 356.0 60 35
slow+MG 370.2 500.2 11 6
fast+nBPX 597.9 877.5 1156 869
med+nBPX 655.6 960.8 1171 838
slow+nBPX 1132.7 1202.3 1357 696

Table 7.2: Solve time in seconds (ascending order in time) and iteration counts for
the system with 579, 649 DOFs (Model 1).

able guarantee of convergence (for the harmonic weights) is evidenced. In contrast,
the (bi-)conjugate gradient solver does not converge at all for large models when no
preconditioning is used. We conclude that the preconditioners described in this paper
are robust.

There are a number of avenues for interesting future work. For example, a com-
parison of our work to AMG approaches would be of great interest. A more complete
analysis of convergence properties for the mean value weights, which do not arise from
the discretization of an elliptic PDE, would also be desirable. Finally, we look forward
to applying our solvers to surface parameterization problems involving more than a
single disk-like region.
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[14] M. Desbrun, M. Meyer, P. Schröder, and A. Barr, Implicit Fairing of Irregular Meshes
using Diffusion and Curvature Flow, in Proceedings of SIGGRAPH, 1999, pp. 317–324.

[15] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev, Topology Preserving Edge
Contraction, Publ. Inst. Math. (Beograd), 66 (1999), pp. 23–45.

[16] D. Dobkin and D. Kirkpatrick, A linear algorithm for determining the seperation of convex
polyhedra, Journal of Algorithms, 6 (1985), pp. 381–392.

[17] T. Duchamp, A. Certain, T. DeRose, and W. Stuetzle, Hierarchical Computation of PL
harmonic Embeddings. 1997.

[18] M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multires-
olution Analysis of Arbitrary Meshes, in Proceedings of SIGGRAPH, 1995, pp. 173–182.

[19] M. S. Floater, Parameterization and Smooth Approximation of Surface Triangulations, Com-
puter Aided Geometric Design, 14 (1997), pp. 231–250.

[20] , One-to-one Piecewise Linear Mappings Over Triangulations, Math. Comp., 72 (2003),
pp. 685–696.

[21] , Mean Value Coordinates, Computer Aided Geometric Design, 20 (2003), pp. 19–27.
[22] M. Garland and P. S. Heckbert, Surface Simplification Using Quadric Error Metrics, in

Proceedings of SIGGRAPH, 1997, pp. 209–216.
[23] T. Gieng, Unstructured mesh coarsening for multilevel methods, Master’s thesis, Multi-Res

Modeling Group, California Institute of Technology, Pasadena, CA, 2000.
[24] T. S. Gieng, B. Hamann, K. L. Joy, G. L. Schussman, and I. J. Trotts, Constructing

hierarchies for triangle meshes, IEEE TVCG, 4 (1998), pp. 145–161.
[25] C. Gotsman, X. Gu, and A. Sheffer, Fundamentals of Spherical Parameterization for 3D

Meshes, ACM Transactions on Graphics, 22 (2003).
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[39] A. Khodakovsky, N. Litke, and P. Schröder, Globally Smooth Parameterizations with Low

Distortion, ACM Transactions on Graphics, 22 (2003).
[40] D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983),

pp. 28–35.
[41] L. Kobbelt, S. Campagna, and H.-P. Seidel, A General Framework for Mesh Decimation,

in Proceedings of Graphics Interface, 1998, pp. 43–50.
[42] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, Interactive Multi-Resolution Mod-

eling on Arbitrary Meshes, in Proceedings of SIGGRAPH, 1998, pp. 105–114.
[43] L. P. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel, A Shrink Wrapping Approach to

Remeshing Polygonal Surfaces, Computer Graphics Forum, 18 (1999), pp. 119–130.
[44] V. Krishnamurthy and M. Levoy, Fitting Smooth Surfaces to Dense Polygon Meshes, in

Proceedings of SIGGRAPH, 1996, pp. 313–324.
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